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Introduction 
Composites manufacturing using the infusion process (VARTM) involve a decompaction 

phenomenon due to the vacuum bag flexibility [1]. For structural parts, woven or non-crimp fabrics 
are mainly used and exhibit a double-scale flow during their impregnation by a liquid resin. Previous 
studies modelled and simulated both the double-scale flow and the evolution of the compaction state, 
assuming that the fibrous preform is a continuous medium with a varying permeability ([2], [3]). 
Nonetheless, a detailed knowledge of the fabric microstructural morphology is essential because it 
impacts intra-tow and inter-tow permeabilities [4], and then, for instance, composites part filling time. 

This study proposes an experimental methodology to quantify at macro-scale (stack scale) and 
meso-scale (tow scale) the evolution of a same fibrous microstructure under several compaction states.  

Experimental method 
A controlled level of vacuum (60 mbar) is applied in a cavity where five plies of quasi-

unidirectional non-crimp glass fabric are previously laid down (Figure 1a, dry state). A 1D continuous 
flow of glycerol is then maintained along the fibers direction, leading to a decompaction phenomenon 
near the fluid inlet (Figure 1a, saturated state). For each compaction state, two 3D images of the 
microstructure are recorded: the first one near the fluid inlet and the second one near the vacuum vent. 

 

 

Figure 1: a) Experimental protocol. b) Sketch of the set-up for in-situ infusion in the X-ray CT.  
c) A cropped  slice (YZ plane) extracted from the X-ray CT 3D reconstruction at X=10 mm, near the fluid inlet, at dry state. 
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To implement this experimental procedure, a set-up is developed to realize in situ downsized 
infusion inside the X-ray CT device (Figure 1b). A PVC plate is dimensioned to respect the geometric 
constraint imposed by the X-ray CT device. To ensure tightness, a double vacuum circuit is adopted. 
A bagging strategy was previously validated to limit boundary effects (not detailed here). 

The obtained 3D reconstructions (Figure 1c) have a field of view (40x40x40mm
3
) large enough to 

measure the macro-scale decompaction. For dry and saturated states, 11 slices (YZ plane, see Figure 
1c) along X axis are selected. For each slice, the vacuum bag detection allows the definition of an 
average stack thickness. Moreover, the resolution of the obtained images (10 µm

3
/voxel) is sufficient 

to detect precisely the boundary of each tow. A slice (YZ plane) near the fluid inlet is analyzed, and an 
image-processing algorithm including edge detection [5] is applied to compute tow areas. 

Results and discussion 
In the following section, the deformation is defined as (1):  
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where i stands for macro or meso,        is the stack thickness,       is the tow area.  

At macro-scale, the fluid flow induces a thickness variation gradient along the X-axis (Figure 2a). 
It validates the ability of the set-up to reproduce and record the decompaction phenomenon within 
constrained area of the X-ray CT device. Near the fluid inlet (X=0.08), extracted microstructures at 
dry and saturated states (Figure 2b) highlight a decompaction gradient along the thickness (Z-axis): the 
tow displacement is higher near the vacuum bag. Nonetheless, the tows deformation, occurring along 
the Z-axis, is comparable (Figure 2c) for tows located near the vacuum bag and near the PVC plate.  

The set-up, whose efficiency is validated at macro-scale, allows a novel quantification of the 
decompaction phenomenon at meso-scale. Tows deformations and displacements within the stack, 
occurring mainly along the Z-axis (negligible movements and deformations are recorded along the Y-
axis), drastically reorganize the fibrous reinforcement microstructure. 

 

 

Figure 2: a) Macro-scale decompaction along X-axis (flow direction). b) Superposition of dry (black) and saturated (pink) 
post-treated microstructures at X=0.08. c) Superposition of dry (white) and saturated (pink) extracted from b). 
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