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ABSTRACT:  In the manufacturing of composite parts by Liquid Composite Molding 
process (LCM), complete saturation of the fibrous reinforcement is key. Incomplete 
saturation leads to voids within the fibers which cause failure of the final product. Thus, 
understanding of the formation of voids is necessary for proper molding. In order to 
analyze the formation of voids during the resin impregnation process, a one-dimensional 
solution based on two-phase flow through a porous medium, is proposed. This model 
leads to the introduction of relative permeability as a function of saturation and a 
modified equation for the saturation as a non-linear advection-diffusion equation with 
viscous and capillary phenomena, which depends on a number of factors. A detailed 
analysis is performed to assess the relative significance of the various input parameters 
on the saturation profiles. In order to numerically solve the modified saturation equation 
for the LCM process a high order essentially non-oscillatory (ENO) technique is 
proposed. The implemented algorithm allows a numerical optimization of the injected 
flow rate, which minimizes the micro/macroscopic void formation during mold filling. 
Some numerical results are presented and compared with the results taken from 
literature in order to validate the proposed mathematical model and the numerical 
scheme. 
 
KEYWORDS: Liquid Composite Molding, Saturation, Void, Essentially Non-
Oscillatory Techniques. 
 

INTRODUCTION 
 
Equations that describe the LCM filling process with void formation are based on a two 
phase flow model and lead to a coupled system of a nonlinear advection-diffusion 
equation for saturation and an elliptic equation for pressure and velocity [3]. In general, 
the saturation equation is a non-linear advection-diffusion equation which includes the 
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capillary pressure effect and it reduces to a purely advection transport equation when 
capillary effects are neglected. The hyperbolic nature of the saturation equation and its 
strong coupling through relative permeability represent a challenging numerical issue. In 
this paper, a very accurate numerical approach is proposed to solve this complex flow 
behavior.  
In previous works [1,2] different experiments were carried out to investigate the process 
of void formation. These experimental works shown that macrovoids tend to form 
during injection at low flow rates, due to capillary dominant effects, whereas high 
injection rates lead to microvoids formation. Based on these observations, a simplified 
mathematical model has been proposed in order to model the LCM filling process with 
void formation. In this model, the diffusivity coefficient in the saturation equation has 
been replaced by a term which depends on the velocity. The permeability is assumed to 
be a function of saturation, and then the continuity equation that governs the pressure 
distribution, includes a source term which depends on the saturation.  
Essential to the optimum process design in LCM is the numerical simulation of the 
modified saturation equation. Many numerical methods to solve this type of equations 
suffer from serious nonphysical oscillations, excessive numerical dispersion or a 
combination of both. The technique here used for solving the advection-diffusion 
equation which governs the evolution of the degree of saturation of porous media is 
based on an essentially non-oscillatory fixed mesh strategy. For the ENO schemes, 
interpolation polynomials of one order less than the order of accuracy required in the 
solution are computed and these polynomials are a good approximation to the values of 
the numerical flux function at the cell walls. The key idea in the rth-order ENO schemes 
is to use the “smoothest” stencil among r possible candidates to approximate the fluxes 
at cell boundaries to high-order accuracy and at the same time to avoid spurious 
oscillations near shocks. However, they also have certain drawbacks. One problem is 
with the freely adaptive stencil choice, which could change.  
 

GOVERNING EQUATIONS  
 
The mathematical formulation of the saturation in LCM takes into account the 
interaction between resin and air as it occurs in a two phase flow. Combining equations 
that describe mass conservation and Darcy’s laws for resin and air phases as described 
in [3], the resulting equation for the saturation in its most general form gives 

( ) ( )S + ( )  ( )   cfvf S D S S
t

φ ∂
∇ ⋅ = − ∇ ⋅ ∇

∂
   (1)  

where  
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Here ( ) cfD S is the nonlinear diffusivity coefficient due to capillary pressure Pc, defined 
as c A RP P P= −  ; v is the total velocity, S is the degree of saturation of the reinforcement 
by the liquid resin, ( ) ( ) /  j Rj jS K S Kλ µ= ⋅ is the phase mobility, with ( )RjK S  the relative 
permeability of the phase j, μj the viscosity of phase j and K the permeability tensor.  
Replacing the total velocity v  by R Av v+  and simplifying, Eqn. 1 can be rewritten as 
follows  

( ) ( ) ( )S + ( )  1 ( )   R
R R

Pv f S f S S S
t S

φ λ ∂∂  ∇ ⋅ = ∇ ⋅ − ∇ ∂ ∂ 
  (3)  
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Assuming that the diffusivity coefficient depends on the resin flow velocity, as 
identified in experimental observations, leads to the following simplified equation,  

( )S + ( )    M
R m R

R

v f S v S
t v

αφ α
  ∂

∇ ⋅ = ∇ ⋅ + ∇   ∂   
            (4)  

The term on the right side has been proposed in [1]. In this model, αM and αm represent 
the dispersive coefficients of the macro and microscopic voids, respectively. 
Since the main interest is to simulate the flow of the resin phase, we can derive the 
governing equations for this problem combining, for the resin phase, Darcy’s law (the 
subscript R for v and p has been omitted),  

( )    R satK S Kv p
µ

= − ∇                           (5)  

with mass conservation 

 S   v
t

φ ∂
∇ ⋅ = −

∂
                        (6)  

To derive a closed model, Eqn. 4 for the saturation has been considered. The simulation 
of the filling process involves the following operations at each time step:

 

1. Calculate the pressure distribution by applying a standard finite element  
discretization to Equation 

( ) S( )     R
sat

K S p
K t
φµ ∂

∇ ⋅ ∇ =
∂

                          (7)  

where the relative permeability and the term on the right side depend on the 
saturation degree.  

2. Calculate the velocity field from Darcy’s law for the resin.  
3. Update the saturation distribution by integrating Eqn. 4 using a fourth-order 

ENO technique (Algorithm ENO-4). 
The boundary conditions are given by: the pressure gradient in the normal direction to 
the mold walls vanishes, the pressure or the flow rate is specified on the inflow 
boundary and the pressure is zero in the empty part of mold. 
       

NUMERICAL SCHEME FOR THE SATURATION 
 
In this study we describe a fourth-order essentially non-oscillatory scheme for the 
numerical saturation solution. The reconstruction algorithm is based on an adaptive 
selection of stencil for each cell so as to avoid spurious oscillations near discontinuities 
while achieving high order of accuracy away from them.  
For the saturation equation 

( ) ( )S + ( )    v f S D S
t

φ ∂
∇ ⋅ ⋅ = ∇ ⋅ ⋅∇

∂
                          (8)  

we define the flux as 

( )1 ( )F vf S D S
φ

= − ∇                           (9) 
 
 

and consider a uniformly spaced grid where each cell 1/ 2 1/ 2[ ,  ]j j jI x x− +=  has a width h. 
If t∆ denotes the uniform time step, Eqn. 8 can be integrated by applying a conservative 
scheme   

 ( )1
1/ 2 1/ 2

n n n n
j j j j

tS S F F
h

+
+ −

∆
= − −                          (10) 
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We want to construct in each cell Ij a polynomial p(x) to evaluate at cell boundaries, 
such that     

1 1
2 2

 
j j

F p x
± ±

 
=  

 
                           (11)  

Since the numerical flux function F is defined by the relation 
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we can observe that if p(x) satisfies  

2

2

1 2 2( ( )) ( )     
hx

h xx

h hp x p x
F S x p y dy F

h h
+

−

   + − −   
   = ⇒ =∫       (13) 

taking a derivative on both sides, which shows that p(x) is identical to the numerical 
flux function at the cell walls. Then we can calculate p(x) by finding its primitive 

 

 0
( ) ( )

x
H x p y dy= ∫                            (14)  

and then taking a derivative. Following the technique described in [4], the calculation of 
H(x) is based on polynomial interpolation. The main ingredient of the ENO method is 
the adaptive choice of stencil. For our case, it begins with a starting point to the left or 
right of the current cell by means of upwinding determined by the sign of the velocity; 
as the order of the undivided differences is increased, the undivided differences 
themselves determine the stencil: the smaller undivided difference is chosen from two 
possible choices at each stage, ensuring a smoothest fit. Then the following fourth-order 
algorithm based on the ENO-Roe numerical flux reconstruction can be described. 
 
ENO-4 Algorithm for the saturation: 
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In the numerical simulation of the modified saturation equation two terms contribute to 
smooth the flow front: one is related to the source term, and the other purely numerical 
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term is introduced by the dicretization scheme. The last effect can be reduced by using a 
fourth-order numerical scheme. 
Fig. 1 shows numerical results using the ENO-4 Algorithm for the saturation of the one-
dimensional test described in [3]. A mold of length 1 m has been considered. The 
saturated permeability Ksat and the resin viscosity μ are set to 10−8 m2 and 0.1 Pa.s, 
respectively. For the numerical simulation, we take 1010Mα

−= , 310mα
−=  and a 

constant injection rate of 0.001 m/s. The domain is assumed initially empty, except the 
first element that represents the injection nozzle that is assumed full-filled. Two 
different models for Eqn. 8 has been illustrated: ( )f S S= , at the left, and 2( )f S S=  , at 
the right.  
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Fig. 1 Saturation profiles for a 1D RTM filling at constant flow rate [3] 
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