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ABSTRACT:  Simulation of RTM processes is usually performed in 2D. Thus, only a 
mesh of the middle plane is needed with the associated degrees of freedom leading to 
important savings with respect to fully 3D modeling. However such modeling needs the 
definition of an equivalent in-plane permeability representing the ignored dimension 
(the thickness). The definition of such permeability is not a trivial task because each ply 
in the thickness direction can be anisotropic, the principal anisotropy directions being 
different from one ply to the neighbor plies. In this work we propose a novel fully 3D 
modeling whose computational cost is equivalent to a 2D solution. It allows addressing 
properly the equivalent in-plane permeability issue. 
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INTRODUCTION 
 
In general the simulation of RTM processes assumes a 2D flow model. The most usual 
model results of combining the Darcy’s law and the flow incompressibility: 

0
p= − ⋅∇⎧

⎨ ∇ ⋅ =⎩

v K
v

                     

that results in the second order BVP: 
( ) 0p∇⋅ ⋅∇ =K                      

The main issue in defining this model concerns the definition of the permeability tensor 
. Different techniques exist, but in what follows we are assuming that an averaged 

permeability has been determined for each type of reinforcement architecture.  
K

 
PGD IN PLATE DOMAINS 
 
In what follows we are illustrating the construction of the Proper Generalized 
Decomposition of a model defined in a plate domain IΞ = Ω×  with and 2Ω⊂ℜ

[ ]0,I H= : 

 ( ) 0p∇⋅ ⋅∇ =K  (1) 
We consider that the laminate is composed of P different anisotropic plies each one 
characterized by a well defined permeability tensor ( ),i x yK -it is assumed constant in 
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the ply thickness-. Moreover, without a loss of generality, we assume the same 
thickness for the different layers of the laminate that we denote by h. Thus, we can 
define a characteristic function representing the position of each layer: 

 11
( )

0
i i

i

z z z
z

otherwise
χ +≤ ≤⎧

= ⎨
⎩

, 1, ,i P=  (2) 

where . Now, the laminated permeability can be given in the following 
separated form:  

( )1iz i= − ×h

)
 

( ) ( ) (
1

, ,
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i

x y z zχ
=

=

= ⋅∑K K x
 (3) 

where  . The weak form of Eq. (1) writes: ( , )x y= ∈x Ω

 
( )* 0p p d

Ξ

∇ ⋅ ⋅∇ Ξ =∫ K
  (4) 

with the test function *p  in an appropriate functional space. The solution ( ), ,p x y z  is 
searched under the separated form: 

 
( ) ( ) (

1
,
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)p z X Z
=

=

≈ ⋅∑x x z
  (5) 

In what follows we are illustrating the construction of one such decomposition. For this 
purpose we assume that at iteration n N<  the solution is already known: 

 
( ) ( ) (

1
,

i n
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i

)p z X Z
=

=

= ⋅∑x x z
  (6) 

and that at the present iteration we look for the solution enrichment:  

 ( ) ( )1 , , ( )n n ( )p z p z R S z+ = + ⋅x x x   (7) 
The test function involved in the weak form is searched under the form: 

 ( )* *, ( ) ( ) ( ) *( )p z R S z R S z= ⋅ + ⋅x x x  (8) 
By introducing Eqs. (7) and (8) into (4) it results: 

 

* ** *

* *
* *
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d ddS dS dSdS dSR R RR R
dz dz dzdz dz
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 (9) 
where  denotes the plane component of the gradient operator ∇ ( ),

T
x y∇ ≡ ∂ ∂ ∂ ∂  and 

 denotes the flux at iteration n: nQ
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⎠   (10) 
Now, as the enrichment process is non-linear we propose to search the couple of 
functions  and  by applying an alternating direction fixed point algorithm. 

Thus, assuming R  known, we compute 
( )R x ( )S z

( )x ( )S z , and then we update . The 
process continues until reaching convergence. The converged solutions allow defining 
the next term in the finite sums decomposition: 

( )R x

( ) ( )1nX +→x xR  and ( ) ( )S z z1nZ +→ . 

We are illustrating each one of the just referred steps: 
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1. Computing  ( )R x  from ( )S z : 

When  is known the test function reduces to: ( )S z

 ( )* *, ( ) ( )p z R S z= ⋅x x   (11) 
and the weak form (9) reduces to:  
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  (12) 
Now, as all the functions involving the coordinate z  are known, they could be 
integrated in [ ]0,I H= . Thus, if we consider:  
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and 
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that allows writing equation (12) into the form 
 

 

* *

* *
x xR R Rd d

R R RΩ Ω

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ ∇ ∇
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  (16) 

that defines an elliptic 2D problem defined in the middle plane of the plate.   

2. Computing  ( )S z  from ( )R x : 

When  is known the test function writes: ( )R x

 ( )* *, ( ) ( )p z R S z= ⋅x x   (17) 
and the weak form (9) reduces to:  
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* * n
R S R SR S

d ddSdS dSRR R
dzdz dz
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  (18) 
Now, as all the functions involving the in-plane coordinates  ( ),x y=x  are known, they 
could be integrated in . Thus, using the previous notation, we can define:  Ω
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that allows writing equation (18) into the form 
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  (21) 
that defines a one-dimensional BVP.  

 

FLOW IN A 2-LAYERS DOMAIN  
 
In order to illustrate the method presented above, we compute the Darcy flow in a thin 
plate composed of two superposed transversely isotropic layers with different 
orientation. As shown in Fig. 1, we consider a plate of dimensions  along 
the 

0L l h> >
x , and axis respectively where we impose a pressure gradient along the y z x axis 

through the imposed inlet and outlet pressures: and  . Zero fluxes boundary 
conditions are imposed along the upper, lower and lateral boundaries. 

inP outP

 In each layer the permeability tensor K is defined as: 

 ( )K K⊥= × + − ×K l l δ l l  (22) 
Where is the medium principal direction and K  and l K⊥ respectively are the scalar 
permeabilities along l  and perpendicular to l . We set the principal directions 
respectively to +45° and -45° with respect to the x axis the in the upper and lower layer, 
i.e. :  

 

upper
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2 2, ,0
2 2

2 2, ,0
2 2

T
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⎝

l
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For the scalar permeabilities, we take 10
K
K⊥

= .  
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Figure 1 : Thin plate Geometry 
 
The solution of this problem using a fully three dimensional finite element description 
can be found in the PhD dissertation of F. Loix [3]. 
In the ( ),x y plane, we solve the elliptic 2D problem defined by Eq. (16) using a 
Galerkin Finite Elements method with P1 triangular elements. The two-dimensional 
mesh used in-plane has a constant spacing in the x direction but is refined in the y 
direction, close to the lateral boundaries of the domain. In the direction we solve the 
BVP defined by Eq. (21) using a 1D Finite Element description with linear interpolation 
on a uniform 1D mesh. Table 1 summarizes the precise numerical values used in this 
example as well as the finite elements mesh parameters. 

z

 
To initialize the PGD iterations, we pick the first mode of the solution 

( ) ( )( )1 1,X Z zx as: 

 

( ) ( )

( )

1 out out in

1

1

1

xX P P P
L

Z z

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

=

x

 (24) 
which is the solution of the z -averaged problem. Additional modes have been 
computed as described in section 2 until the norm of the final residual was less than 1% 
of the norm of the residual when only the first mode is considered. 
 
  
Table 1: Numerical parameters 

Physical 
dimensions 

Value Units 

L  1 m  
l  0.2 m  
h  0.01 m  
K  10-7 2m  
K⊥  10-8 2m  

inP  1.05 bar 

outP  1.00 bar 
Mesh Parameters # dof # 

elements 
( , )x y -plane 1500 2842 

 -axis z 21 20 

Impermeable boundaries 

L 

h l

Inlet Outlet 
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The first mode actually describes very well the final pressure solution, excepted close to 
the boundaries. Therefore, only 21 additional modes are computed by the PGD method, 
mostly to satisfy the imposed boundary conditions. Nevertheless, these additional 
modes have a dramatic influence on the flow patterns, as illustrated below. Finally, 
although the equivalent three-dimensional problem would involve more than 30000 
unknowns, the additional modes are computed in a few seconds as the computational 
cost of the method scales like the cost of a two dimensional modeling (16). 
 

 
Figure 2: Second mode of the PGD solution ( )2 ,X x y and ( )2Z z . 

In Fig. 2, we show the second mode: ( ) ( )( )2 2,X Z zx . As the first mode does not satisfy 
the zero flux boundary conditions, the second mode provides a local correction. A 
careful analysis of the modes would also show that a later mode provides another 
correction to the pressure field close to the inlet and outlet of the plate, to accommodate 
the Dirichlet boundary conditions.  
 

 
Figure 3: Streamlines of points initially located on a vertical line in the middle of the 
inlet face 

Flow 

x y 

 
In Fig. 3, we illustrate the complex mass transfer taking place between the two layers by 
showing the path-lines of material points initially located on a vertical line in the centre 
of the inlet.  Due to the anisotropy, these points travel towards the lateral boundaries in 
orthogonal directions, depending on the layer to which they belong. At the lateral 
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boundaries, these points are forced to switch layer as a result from the zero flux 
condition. The path-lines therefore organize into a set of flattened spirals. Such 3D 
effects are of course impossible to predict using purely two-dimensional models but are 
well captured in the separated representation that we use. 
 
CONCLUSIONS 
 
This paper revisits a recurrent issue in the numerical modeling of RTM flows, the one 
related to the pertinence of using 2D flow models making use of an averaged 
permeability of the different layers involved in the laminate. In complex situations 
significant deviations could be found, these deviations are being studied at present, and 
could justify the use of a fully 3D modeling. However, 3D simulations are reputed 
expensive from the point of view of the computational resources required for addressing 
complex scenarios, in which many plies are involved in the composite laminated. The 
use of separated representations as the ones involved in the proper generalized 
decompositions –PGD- could be an appealing alternative for addressing 3D models 
with a cost characteristic of 2D simulations. The application of the PGD on the fully 3D 
simulations of flows encountered in RTM processes, involving a moving front, 
constitutes a work in progress. 
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