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SUMMARY: We will here combine previous studies to yield a model that can predict the true
permeability of NCFs. The model includes the geometrical features from the stitching process as
well as statistical variations. A correlated randomisation is performed by the use of Monte Carlo
simulations in order to mimic the global geometry of the fabric. The permeability for the unit
cells, which describes the local geometry of the fabric, are thereafter determined by CFD-
simulations. The permeability model for a biaxial fabric including the features from the stitching
process proves that the correlation distance together with the amount of irregularity have only
slight influences on the global permeability, while the presence of crossings and the average
channel width are extremely important for the total permeability.
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INTRODUCTION

In previous work we have developed a general statistical permeability network model [1,2] and a
CFD-unit cell model for the permeability of Non-Crimp Fabrics, NCFs [3]. We will here
combine these studies to yield a model that can predict the true permeability of NCFs.

The NCFs consists of layers of parallel fiber bundles stitched to other layers preferable laid in
other directions. This results in formation of channels between the bundles which consists of a
large amount of fibers. The two scale porosity implies that there will be two types of flow during
impregnation i.e. within and between the bundles where the second kind is likely to be of highest
importance for the overall flow rate and thus the permeability [4]. The possible location of the
bundles is limited to a certain volume but their actual position within this volume can vary [1].
The stitching and fibers going from one bundle to another add to the complexity. The implication
of this is that there will be easy and less easy paths for the fluid to penetrate the fiber network.
The flow through fabrics used in composite manufacturing is usually modeled with Darcy’s law,
which in its general form is written as:

K.
Vi=— Upaj: (l)
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where v is the superficial velocity, K the permeability tensor u the dynamic viscosity and p the
pressure. On the first hand, the permeability of perfect geometries of different types is well
known, see for instance: [5] regular packing of cylinders.
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On the second hand there is a lack of knowledge of systems having detailed geometrical
description of the features from the stitching process and irregularities in the geometry.
Alterations to perfect geometries have been considered in a few cases. It has, for instance, been
shown that perturbations to the fiber pattern and radii can give remarkable changes to the
permeability [6].

BASIC APPROACH

The bundles and the inter-bundle channels are direct consequences of the stitching. The stitching
process also gives rise to two other major geometrical features of the fabric, namely the
penetration of the channels by the thread where the fabric is stitched, Fig. 1a, and the crossing of
fibers between two neighbouring fiber bundles, Fig. 1b.
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Fig. 1. Top view of a biaxial NCF showing a) the thread and b) the crossings. c) Typical
distribution of the different features from the stitching process in a biaxial NCF and its unit cell
distribution.
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Due to the periodicity of the stitching process, the geometrical features are repeatable in a fabric
and their distributions are hence dependent on the stitching pattern. Profound CFD-simulations
of the whole fabric are to date impossible due to the enormous amount of volume elements
required to fully resolve the geometry and flow. The fabric can instead be divided in unit cells,
cf. Fig. Ic, which facilitates the simulations.

In order to develop a global permeability model for a biaxial fabric, which takes into account
the effects from the stitching process and statistical variations, the work in three previous studies
[1,2,3] will be combined. The global permeability of a fabric can be calculated by the use of a
network model as was done in [1,2]. The tactic with the network model is to connect a number of
unit cells with different permeability and thereafter calculate the overall permeability of the
fabric. The unit cells in the network are connected to each other by the fluxes through the cell
faces, see Fig. 2a.

Fig. 2. a) Placement of bundles in layers for biaxial fabric building a framework for network
model. b) Side view of a unit cell in one layer.
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The total fluxes through the unit cell faces are obliged to satisfy mass conservation for
incompressible fluid [2]:

Ivl_lde+I l]__dS+Iv 1 dS+j ,dS =0. (2)
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The boundaries parallel to the pressure gradient are set to be periodic, while pressure
boundary conditions are set on the boundaries perpendicular to the pressure gradient. In real
fabrics there will also be alterations of the geometry along the inter-bundle channels which is
implemented in the network model so that the geometry and consequently the permeability can
vary freely with spatial coordinate. The randomisation of the geometry is correlated i.e. adjacent
unit cells are coupled to each other and their geometry and spatial coordinate can be determined
by the use of a Monte Carlo method as in [1]. The two global parameters used in the Monte
Carlo method are: the amount of irregularity in the system,z, and what kind of irregularities that
dominates, shift or inclination, y[1]. Application of the network model and generation of channel
gap distribution by the Monte Carlo method is performed on a biaxial fabric with a structure as
the one in Fig. 1c, where every fourth cell contains the thread and the middle cell between these
thread cells contains a crossing. Having the network, it must be filled with permeability values.
This is done by usage of CFD-simulations on three types of cells: the plain unit cell, the thread
unit cell and the crossing unit cell [3]. The discrete permeability values from the CFD-
simulations, from variations of the geometries of the three cells, are fitted to analytical functions
in order to obtain a permeability function for an arbitrary unit cell:

K. .(b,h,c,t) =T(b,h,t)-C(b,h,c)-K ,,, (b,h), 3)

where the function 71(b,4,t) is the contribution from the thread, C(b,A,c) from the crossings, Kpjain
is the permeability for a plain unit cell and ¢ and ¢ determines the extent of the crossings and
thread in the channels with width, b, and height, A4, respectively. As indicated in Fig. 1c, the
thread and the crossing cannot exist in the same unit cell.

RESULTS

The permeability of the unit cells is strongly dependent of the channel width and the size of the
crossing, see Fig. 3a,c. It is also obvious that a thread unit cell has a lower permeability than a
plain unit cell, see Fig. 3b. When the unit cell permeability data are put into the network model
the influence from the global parameters may be studied.
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Fig. 3. a) Permeabllzty for variation of the channel width. Influence of b) the thread, T(b,h,t), c)
the crossings, C(b,h,c), on the permeability for two channel shapes, b/h.
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At a given y, the total permeability of a system with the size of 100x100 cells first increases with
the irregularity 7, but afterwards it decreases as described in [1], see Fig. 4a. The change of the
global permeability is smaller than for a structure without the thread or crossings [1], since the
local permeability for the unit cells including the thread or the crossings have weaker
dependence on the channel parameter, b/h, than the plain unit cell. Naturally, the standard
deviation of the channel width increases monotonously with 7 since an increased irregularity
results in greater variations of the channel width, cf. Fig. 4a. Fig. 4b shows that the permeability
increases with the characteristic correlation distance, /y, along the bundles as the wide gaps gets
longer. This is especially true for higher standard deviations, o. In comparison, the permeability
for a regular structure without the thread and the crossings is 1.0224-10"° m?, which indicates
that the thread and crossings are very important for the permeability.
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Fig. 4. The influence of a) the Monte Carlo parameters t (bottom axis), y (in legend) and b) the
correlation distance on the global permeability for different standard deviations for a network
structure including the thread and the crossings as in Fig. Ic.

Fig. 5a shows that the average channel width also considerably influences the global
permeability, while the standard deviation of the channel width at the same Monte Carlo
parameters =10°, =107 only changes slightly. Fig. 5b shows that the influence of the crossing
width is extremely important, while there is only a weak dependence of the global permeability
on the size of the thread. Thus all the deviations from regular structures involving changes of ¢ or
changes in spatial placement of the crossings in the structure leads to significant changes of the
total permeability.
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Fig. 5. The influence of a) average channel width and standard deviations and b) the sizes of the
thread and the crossings on the permeability for y=0.01.
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The permeability from the global network model can be validated to experimental data on the
permeability for a real fabric with similar geometrical dimensions. The measurements provided
by SICOMP AB give permeability data between 2.49-10™'" and 4.82-10"" m*. The inclusion of
the thread and crossings greatly improve the prediction of the permeability, about 1-10™"° m?
without to about 4-5-107"" m? with thread and crossings.

CONCLUSIONS

A global permeability network model for real NCFs has been developed. The model is based on
a network of unit cells including the features from the stitching process as well as statistical
variations of the geometry. The model shows that the global permeability only varies slightly
with the Monte Carlo parameters, which set the irregularity of the network of unit cells. The
global permeability also shows a weak dependence on the correlation distance between adjacent
cells. The largest influences on the global permeability are from the presence of fibers crossing
the inter-bundle channels and the average channel gap width. The standard deviation of the gap
width and the presence of the thread have less effect on the global permeability. Validation
shows that the model is greatly improved when including effects from the stitching process.
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