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SUMMARY: Liquid Composites Molding (LCM) processes simulation involves an efficient
treatment of the advection equation governing the evolution of different process variables
(volume of fluid, heat transfer, incubation time, etc). In a previous work [1], a second-order
scheme with flux limiters has been developed for the integration of the advection equation,
which governs the volume fraction evolution. Due to the fact that other properties, like the
incubation time, are not defined in the empty part of the mold, some numerical difficulties are
found during the process updating [2]. Then the scheme described in [1] must be modified to
solve the extra difficulty introduced by the advection equation governing the evolution of the
incubation time. This paper describes a new flux limiter technique, based on TVD schemes [3],
for the calculation of the incubation time and the fluid fraction in mold filling simulation in thin
cavities with replaced fiber mats using a fixed mesh.

KEYWORDS: Fixed Mesh Resolution, Incubation Time, RTM, Liquid Composite Molding,
Advection Equation.

INTRODUCTION

In LCM (Liquid Composite Molding) processes several properties must be transported by the
flow: curing reaction, temperature, incubation time, fluid fraction, etc. In this work different
schemes for the numerical treatment of the advection equation that governs the evolution of a
generic fluid property are proposed. The application of the integration of the fluid presence
function and the incubation time is achieved by using a new flux limiter strategy that allows to
obtain accurate results in bidimensional LCM simulations.
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In order to analyze the accuracy of the different techniques proposed in this work, we consider
the resolution of the advection equation that governs the evolution of a generic fluid property J :

ﬂza—J+ v-VJ =8 (D

dt ot
An appropriate technique for the discretization of eq.(1) consists in applying the Leisant-Raviart
technique (discontinuous finite element method). We can write the conservative form of the

eq.(1) as
J;ze (2—{+Div(]y)—J Div ydezLySdQ (2)

where Q° represents an element of a finite element mesh of the fluid domain Q(t). From eq.(2),
using the divergence theorem and taking into account the fluid incompressibility, results

J‘Qg aa—idQ + J;gﬁ Jvnds + J:m Jvnds =J'Qe SdQ 3)

where 6Q°" denotes the outflow boundary and 0Q° the inflow boundary of the element Q°,
respectively.

One of the main difficulties related to eq.(3) is that the function J associated to the fluid is not
defined in the element boundaries along which are applied the boundary integrals. If we consider
a constant value in the element, the discontinuous finite element method assumes that on the

outflow boundary the function J is equal to the existing value inside the element Q°, i.c.
J(xe0Q")=J° and that on the inflow boundary the function J is given by its value in the
upstream element, i.e. J(x €0Q*)=J". Thus, eq.(3) can be rewritten in the equivalent form:

a]‘* el _ e e— e
—lerl=-7 L vads —J LQB? vads + S (4)

where | Q| denotes the volume of Q. Considering a first order explicit approximation of the
time derivative, we can write (4) as

QE

QF Q°
+J! —+ S At
Qe’ e— e (5)

Qe\

where we define the inflow and outflow fluid volumes as Q™ = ¢ A¢ and Q" = ¢ A¢, being ¢~

n+l _ gn _ gqn
Je - Je Je

and ¢~ the outflow and inflow flow rates, respectively. In the above equation, the subscript for
the property J, denotes the considered element and the superscript indicates the time step.

A FIRST ORDER TECHNIQUE FOR THE CALCULATION OF THE FLUID
PRESENCE AND INCUBATION TIME

The evolution of the volume fraction, /, and the incubation time, £, are given as a general linear
advection eq. (1) where for the volume fraction, J=I, S=0, and for the incubation time J=FE and
S=1, with the initial conditions:

o) ! ile(t)' =0)= 0 ;le(t)
I(E’t_o)_{o Ing(t) ’ E(E’t_o)_{NOtdeﬁned )_CQQf(t)
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Then the discretization form of the governing equation of the fluid fraction, /, is defined from
eq.(5) considering J=I and S=0:
Qr Q
M= -1"—+I" —
€ e Qe (6)
On the other hand, the incubation time is defined as the elapsed time since the resin components
were mixed just before the injection. The value of the incubation time E is then set to zero in the
injection nozzle and varies throughout the filled part of the mold, but it is not defined on the
empty one. The discretization form of the equation governing the evolution of the incubation
time is obtained from eq.(5) considering J=FE and S=1:
Qr Q
+E —+ At
<10 (7)
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A first problem appears if we consider the time ¢ for which an element Q° starts its filling

process from its upstream element Q° . To illustrate this limitation we consider the situation

where the outflow volume is null, Q" =0, then eq.(7) establishes that solution at #,,; is
dominated by solution existing in the element in the previous instant, even when this element is
empty and E is then not defined. In order to solve, properly, the eq.(7) we use the method
described in [2], by multiplying eq.(7) by the fluid fraction / and eq.(6) by the field £ and sum
both resulting equations, it results in solving eq.(1) for J=EI and S=I whose discretised form is
given by
n+l n n Q+ n Q_
ElY =(EI) —(El) —+(EI) —+S At
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where taking S as [ evaluated in the time n+/ then S¢ =1""" and yields

E:+1 — (El)e _ (El)e Q+ + (El)e— Q- + At (9)
I:+1 ]:+1 ‘Qe I:+l ‘Qe

It is important to notice that in order to obtain E"" will be necessary the previous resolution of

1" Moreover we assume that only exists inflow volume in a given element when the upstream

element is completely filled i.e. Q™ #0 only if si /° =1, and exists outflow volume from a

given element when it is completely filled, that is Q" # 0 only if /° =1. This condition is
included in the formulation by means the parameter 6 defined by

1 if I,=1 1 if I, =1
0, = and o, = (10)
0 if I,<1 0 if I, <1

If we include this condition in eq.(5), the discretization of the advection equation for a general
variable can be rewriten as

QF Q°

JI =g =g T s T+ ST A (11)
Q° Q°
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A FLUX LIMITER TECHNIQUE FOR CALCULATION OF THE FLUID PRESENCE
AND INCUBATION TIME

In order to extend the previously described first order schemes to second order with flux limiter
ones for the resolution of the advection eq.(1), we change the notation and rewrite the eq.(11) as
follows:

ntl _ n _i \ 7 n+l .
S =Jl © ge;@j g+ S with .
/, =j:.P =%{(5€Je +8,J,)-sgn (v, n,)(8.7,+6., )}

where A(e) is the area of the element e, j represents a neighbour triangle element, n,; is the
outward unit vector on the common edge of the triangles e and j, /,; is the length of that edge and
the velocity vector of element e is v., see Fig.1.

The extension of the above scheme to second order is described by eq.(12) replacing f by
I

f ij defined by:
iy =i +%z(n,-)(sgn(ze 1,)=50y, ‘nq-](é,-l,- ~5.0,) (13)
o

where the average velocity between elements e and j is defined by v,; and d.; represents the
distance between barycentres of the triangles e and j. The superscript UP denotes first order
upwind scheme and SW second order with Sweby flux limiter (4). Note that we include again the
use of the parameter 6 defined by

S = Lif 4=l for k=e,j (14)
“So i 1, <1 /
and r,; is defined by
. 5.J —5,;1;} .
e if cosd, >0
) / { 5., -5, /
Yy = (15)
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j7 T Ceve

in which 6, (Fig.1) denotes the angle between n,; and the velocity vector of element e, the
definition of the Superbee flux limiter is then given by

755 (r) =max{ 0,min{ 27,1}, min{ ,2 } } (16)

For the integration of the fluid presence function /, we take J=I and $S=0 in eq.(12) and for the
resolution of the incubation time, J=EI and S=I. It is easy to note that if we take
o, =1 if I, <1 for k=e,j (17)

} if cosf, <0

the condition (17) means that neighbour elements can exchange fluid without complete its own
filling previously.
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NUMERICAL SIMULATIONS

In order to evaluate the accuracy of the different schemes described, we consider a saturated
mold as depicted in Fig.2. In that case, the exact resolution of the pressure and velocity
distribution are known and then they do not contribute to the numerical errors induced by the
discretization of the advection equation. A comparison of the different fluid presence function
integration schemes proposed is shown in Fig.3. It can be noticed that the use of the Superbee
flux limiter allows to compute a more accurate solution in the neighbourhood of the discontinuity
associated with the flow front. Moreover, as it was expected, the use of ¢ defined by eq.(14)
instead of eq. (17) allows to avoid the diffusive flow front. Fig.4 shows the incubation time along
a flow streamline in the elements comparing exact solution with the different ones given by
eq.(12). Here once again the use of the Superbee flux limiter shows a more accurate solution.
The convergence analysis shown in Fig.5 has been carried out for a complete mold filling. The
error is defined by the L, norm at the solutions computed for different mesh sizes. The order of
convergence is two times higher when the Superbee flux limiter is used instead of the first order
upwinding scheme. Fig.6 depicts the incubation time distribution and the filling flow pattern of a
U-Shaped mold of 500x260x10 mm. The constant flow rate is 4 cm’/s. and the porosity is 0.5. It
is interesting to note how the fluid located in the left upper part of the mold, even just closed to
the injection nozzle, stops and gets ‘older’.
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CONCLUSIONS

A new approach to solve the advection equation of a general fluid variable using a second order
flux limiter technique has been defined and tested. A fixed mesh numerical algorithm has been
completed and improved for simulate both the bidimensional flow behavior and the incubation
time in LCM process.
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