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SUMMARY: Orientation tensors are commonly used in short-fiber reinforced injection molding
simulations of industrial polymer composite products. Unfortunately, the evolution equation for
each even-order orientation tensor is written in terms of the next higher even-order orientation
tensor. It has been shown that current fourth-order closures approach the fourth-order truncation
limit when representing the fiber orientation distribution function so that an increase in accuracy
necessitates the development of a sixth-order closure. A sixth-order fitted closure is presented
which assumes that the orthotropic planes of material symmetry of the sixth-order orientation
tensor correspond to the principal directions of the second-order orientation tensor. The sixth-
order closure is computed using a fitting procedure which minimizes differences between the
exact and the fitted sixth-order orientation tensors over a range of orientations encompassing
much of the eigenspace of the second-order orientation tensor. The sixth-order closure is
demonstrated to approach the sixth-order truncation limit in representing the fiber orientation
distribution function over a range of flow fields.

KEYWORDS: Orientation Tensor, Polymer Processing, Fiber Orientation Distribution
Function, Closure Approximation

MODELING THE DISTRIBUTION OF FIBERS

Short-fiber polymer composites are used extensively in industrial applications due in large part
to their high strength to weight ratio. The orientation state of the short-fibers is critical since it
dictates the material properties of the composite structure. Therefore understanding and
predicting the fiber orientation is necessary for practical structural design purposes. Most
polymer composite fiber orientation simulations begin with the model presented by Folgar and
Tucker [1] which superimposes the motion of a single rigid particle in a dilute suspension with
that of interacting particles through the use of an interaction coefficient C; to account for
interactions between fibers. The Folgar-Tucker model, which solves the orientation distribution
function of fibers Y(# ), is constrained to simple flow simulations due to excessive computation
time and memory usage, but is considered to be the benchmark for fiber orientation simulations
[2-8]. The solution of the Folgar Tucker model will be referred to as the ‘exact’ solution
throughout the remainder of the paper recognizing that the fiber orientation distribution (@ ) is
solved numerically.
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For industrial injection molding applications, Advani and Tucker [2] defined
orientation tensors using moments of the fiber orientation distribution function to represent the
fiber orientation state. The orientation tensors, a;j, a;jx, @ijkimn, €tc. capture the stochastic nature of
the fiber orientation distribution in a compact form [2] and are defined through the dyadic
products of the unit vector p; which lies along the fiber axis and the distribution function (/)
over the unit sphere

ay=[ . p.pw(8.9)ds Qi = [ .. PP, PLPV(O.9)dS (1)

By the application of Eqn. (1) the orientation tensors can be shown to be completely symmetric
with respect to any pair of indices. Higher order orientation tensors completely describe the
lower order orientation tensors using the normalization condition for the distribution function

A ) along with Eqn. (1) [2]

lzaii a. =da

ij iipp Qi = Lijilgq (2 )

where repeated indices indicate summation, i.e. a; = ai1 + a2 + az3. Advani [2] combined Eqn.
(1) with the Folgar-Tucker model for the distribution function Y(# ) to obtain the evolution of
the even order orientation tensors a;;, a;x , etc. The time required to compute the evolution of the
second-order orientation tensor is significantly less than the computation time required to evolve
the distribution function y(# ). Unfortunately, the evolution of the second-order orientation
tensor a;;is a function of the fourth-order orientation tensor a;, and the evolution equation of the
fourth-order tensor a;;; contains the sixth-order tensor a;jxm, [2]
P (a,
Dt
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where @ is the vorticity tensor, A is the fiber aspect ratio, and § is the scalar magnitude of the
rate of deformation tensor p,. Indeed, the evolution equation of any even-ordered orientation

tensor requires information from the next higher even-ordered orientation tensor which
necessitates the use of a closure which approximates an orientation tensor in terms of the
components of the lower ordered orientation tensors. There exist many closures of the fourth-
order orientation tensor as a function of the second-order tensor [2,4-7], along with several
closures of the sixth-order orientation tensor [2,8].

A FITTED SIXTH-ORDER CLOSURE

In the literature there exists only a brief investigation into sixth-order closures. Altan et al. [8]
presented a sixth-order quadratic closure for dilute suspensions of fibers. Their closure is only
accurate for highly aligned distributions and has been stated to provide little improvement over
fourth-order closure results for the additional computational expenses [5]. Advani and Tucker [2]
present a sixth-order hybrid closure, but for most industrial applications the sixth-order hybrid
closure overestimates the actual alignment of the fibers [9,10].

This paper presents a sixth-order fitted closure similar in construction to the fourth-order
fitted closures of Cintra and Tucker [5], VerWeyst ef al. [7] and Chung and Kwon [6]. Our sixth-
order fitted closure is computed from the components of a;x and assumes that the planes of
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orthogonal symmetry of the sixth-order orientation tensor correspond to the principal
directions of the second-order orientation tensor. In this formulation each principal component
of the sixth-order orientation tensor is represented as a function of the independent principal
components of the second-order orientation tensor.

A general sixth-order orientation tensor has 729 components of which 28 are independent
by symmetry arguments for orientation tensors. If we assume that the principal frame of the
second-order tensor a; forms the orthotropic planes of material symmetry for the sixth-order
tensor a;jxmn, only 10 independent nonzero components of @;j,, remain

5111111’ 5111122’ 5111133’ 6_11122227 5112233’ 5113333’ 6_1222222’ 6_1222233’ 67223333’ ('7333333 (4)
where the overbar indicates that components of the sixth-order orientation tensor are given with
respect to the principal frame of the second-order orientation tensor. Using Eqn. (2) for the
relation between the fourth- and sixth-order orientation tensors, it can easily be shown that only

four unknown components of a, remain from those shown in Eqn. (4) (see e.g. [9]). The

ijkimn
newly created Eigenvalue Based Fitted sixth-order closure (EBFg) is formed by arbitrarily
selecting the four components a@,,,,,;> @ 111225 @22222 > Ad @33335; to be unknown.

A second-order orientation tensor a; has three eigenvalues a(), two of which are
independent from Eqn. (2). The two independent principal values of the second-order tensor are
selected to be a(1y and a() when setting a1 >a@>a). The four unknowns of the EBFg are formed
by fitting the four remaining independent components of the sixth-order tensor to a second-order
polynomial of the eigenvalues of the second-order orientation tensor as
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The new sixth-order closure is computed from the fourth-order orientation tensor ayy. First the
second-order orientation tensor a; is formed from a; using Eqn. (2). Then the eigenvalues a()
and a(y) are computed and the rotation tensor is formed from the eigenvectors of a;. Next, the

principal components of the sixth-order orientation tensor a, are computed using the EBFg

ijkimn
closure from Eqn. (5). Finally, the sixth-order orientation tensor in the principal frame is rotated
into the material frame yielding a;jx, for the given ay,.

DISTRIBUTION FUNCTION RECONSTRUCTION

Reconstruction of the fiber orientation distribution function provides a quantitative means of
assessing the effect of introducing closure approximations on representing Y(6,9) [9,10]. Onat
and Leckie [11] demonstrated that an approximate distribution function ¥, of N™ order can be

reconstructed based upon the deviatroic form of the orientation tensors as

l/}N (0, ¢) = fo Vo + f,, V,, + fgfleg/kz + fg/kzmn ngklmn + (6)
where f,, fij fiim, fijkimn are the basis functions and V,, Vj; Vi, Vijkimn are the corresponding Fourier
coefficients which can be written entirely in terms of the orientation tensors (see e.g. [2,9] for a
full discussion). This method is identical to expanding the orientation distribution function
W 6,9) in terms of orthogonal functions of p; [11].
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To asses the error between the exact distribution function Y(6,¢) and the N™ order
reconstruction of the distribution function, ,(6,¢) we use the following error metric [9,10]

ERR, = \/ [w©.0.1,) -9 6.0.1,as (7)
SZ

where the inte§ration is performed over the unit sphere at the time ¢,. Equation (7) may be used
to form an N™ order truncation limit from the exact N™ order orientation tensors in Eqn. (1)
which is used to assess the accuracy of a given closure. To form the truncation limit for a
particular flow field it is necessary to first evolve the exact distribution function Y(6,¢9). The
orientation tensors are computed from W(6,¢) by Eqn. (1) and the distribution function is
reconstructed to the desired order with Eqn. (6). This reconstructed distribution function is then
used with the exact distribution function Y(6,¢) in Eqn. (7) to quantify the error when
representing Y(6,¢). When the exact orientation tensors a;;, aju, ajjkimn, €tc. are used in Eqn. (7),
the truncation limit of the reconstruction is obtained. Alternatively, when a closure is employed
to compute any of the orientation tensors, Eqn. (7) indicates the additional error introduced by
the closure. Note that any N™ order closure of an orientation tensor can only be as accurate in
representing the distribution function as the exact N™ order reconstruction. As discussed in Jack
and Smith [10] the existing fourth-order closures approach the fourth-order reconstruction limit,
therefore any substantial increase in accuracy in the representation of the distribution function
will need to come from a higher-order closure.

COMPUTING THE EIGENVALUE BASED SIXTH-ORDER CLOSURE

In this study, the finite difference technique of Bay [3] is used to evaluate the distribution

function Y(6,¢) for the five representative flows used in the fitted closure of Cintra and Tucker

[5]. All flows have a large interaction coefficient, C; = 10, representing the upper range of fiber

interactions for industrial applications of injection molding processes. The unknown coefficients

Cj in Eqn. (5) are determined by minimizing the difference between the components of the

actual ajjum, in Eqn. (1) and those computed with the closure approximation in Eqn. (5) using the

optimization package VisualDOC 4.0 [12]. The cost function is minimized in less than 40

iterations using the BFGS method for unconstrained optimization with the resulting fitted
components given as

0.07492  0.10439 -0.42312 0.27277 0.79524  0.49666

[C-.]z 0.05126 —-0.13977 -0.10376 0.48791 0.09708 —0.05669

Y 0.14046 —-0.37744 —-0.26722 0.64968 0.23585 1.07191

0.97708 —1.72435 -1.86763 1.60122 0.74654  0.91396

To demonstrate the increased accuracy that may be gained through a sixth-order closure; the
error metric presented in Eqn. (7) is shown for two flows, Simple Shear and Shear Stretch B (see
e.g. [5]). These two flows are used in the fitting procedure for most fitted closures [4-7], and are
indicative of flow behavior occurring in injection molding processes. The approximate sixth-
order orientation tensor is computed from the exact fourth-order orientation tensor @, from Eqn.
(5) and is used to compute the error metric ERRsEBFs from Eqn. (7). The values for the error
metric for the transient solution are given in Fig. 1 for both flows. For reference purposes, the
error metric for an exact second-order truncation ERR,, fourth-order truncation ERR,, and sixth-
order truncation ERR are also shown (see e.g. [9,10]). Note that any closure of the fourth-order

(8)
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orientation tensor will only approach the fourth-order truncation line ERR,, whereas
throughout the flow history the EBF; closure is able to attain a level of error below the fourth-
order truncation limit ERR,and approaches the sixth-order limit ERR.

0.35

- ERR; - - ERR, PR
03 - . -_— ERRI 25 — Ean P
AN ERRyg ERRg .
025 N . x ERRZEBF; x ERR¢EBFg K4
) . o ERRgIBOF; 2 o ERRgIBOF, ) ‘

0.2 v

ERRy
'

0.15

s
01 ©0000000000000O0O0O0O0
s

0.05 05

X
XXXXxxXXXXXXXXXXXXX

0 3

‘ 0 =3
5 10 15 20 25 30 0 5 10 15 20 25 30 35 40

Gt Gt

Fig. 1. Transient Error for Simple Shear (left) and Shear-Stretch B (right) for C;= 107

CONCLUSIONS

To obtain accuracy greater than the fourth-order truncation limit in representing fiber
distributions in short-fiber injection molding simulations, a sixth-order closure becomes
necessary. We present a fitted sixth-order closure that is computed from the components of the
fourth-order orientation tensor and assumes that the principal directions of the second-order
orientation tensor define the orthotropic planes of material symmetry of the sixth-order
orientation tensor. The newly formed sixth-order fitted closure is demonstrated to more
accurately represent the distribution function under certain flow situations than the fourth- order
truncation limit when representing the fiber orientation distribution function. To fully utilize a
closure of the sixth-order orientation tensor, it will be necessary to demonstrate the applicability
of the higher order closure by evolving the fourth-order orientation tensor for actual injection
molding processes.
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