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SUMMARY:: This paper presents the results of numerical studies of the interface behav-
ior between a granular body in contact with a rough wall under plane shearing. Herein the
essential properties of a dry granular material are described using a hypoplastic Cosserat
continuum approach. Along the bounding wall in motion the slide and rotation resistance
of particles in contact is mainly determined by the interaction between the wall rough-
ness and the size, shape and roughness of the grains. It is demonstrated in the paper
that with the so-called Cosserat rotations the rotation resistance between the granular
layer and the surfaces adjoining the boundaries of the granular body can be modeled in
a physically natural manner. The numerical investigations show that for large shearing
the deformation is localized within a narrow zone parallel to the interface. As a result of
strain localization an initially isotropic material gets a transversely isotropic structure.
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INTRODUCTION

The localization of shear deformations within a narrow band parallel to a bounding struc-
ture in motion is a well-known phenomenon in granular materials [1,2]. Herein the evo-
lution of the localized zone mainly depends upon the grain size distribution and grain
shape, the stress level and initial density, the slide and rotation resistance of particles
in contact with the bounding structure and the dilatancy resistance of the whole sys-
tem. The displacement profile across the height of the shear band is no longer linear as
predicted by a classical continuum approach. In the present paper shearing of an gran-
ular strip with respect to the interface behaviour of the bounding structure is modeled
based on a hypoplastic Cosserat continuum [3,4,5]. The evolution equations for the stress
tensor and the couple stress tensor are incrementally non-linear, which models urelastic
behavior. The constitutive equations take into account the influence of the pressure level,
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the void ratio, the mean grain diameter and the rotation: resistance of grains. With the
Cosserat boundary conditions the rotation resistance of particles at the interface between
the granular layer and the surfaces adjoining the boundaries of the granular body can be
modeled in a natural manner. Very rough walls can capture the adjoining small grains
so that neither sliding nor rotating may occur. Then the relative displacement and the
Cosserat rotation at the interface are zero. For medium rough boundaries and quasi-static
processes an empirical relation between the boundary displacement and the corresponding
Cosserat rotation is assured [4].

HYPOPLASTIC COSSERAT MODEL

In a Cosserat continuum a material point possesses displacement degrees of freedom wu;
(i=1,2,3) and rotational degrees of freedom w; (i=1,2,3) which are called Cosserat rotations.
The rate of deformation and the rate of curvatures are defined as €;; = 04;/0z; + €xi;wy
and k;; = Ow§/Ox; respectively, where 0u;/0z; denotes the velocity gradient and ey,
denotes the permutation tensor. The proposed hypoplastic Cosserat model includes three
state variables, i.e. the stress tensor o, the couple stress tensor p and the void ratio e.
The evolution of the state variables are described by the following objective rate type
equations [3,4]:

Gij = fs [fl2 Eij + (Ort Ent + [t Rowa) 63 + fa @ (655 + 675) \/sz En + R Ekz] , (1)
fij = fs dso [a? Kij + fij (6w €xt + Dy Forr + 2 faae \/ékl Ext + Ria ﬁkl)] ] (2)
é:(1+€)ékk, (3)

with the rormalized quantities cArij - Uij/okk X 5‘:} — c“rij 5T (5,_7/3 . ﬂij = ,uij/(dg,o Ukk)
and R;; = dso k;; . Herein §;; is the Kronecker delta and dsy denotes the mean grain
diameter, which enters the constitutive model as an internal length. The influence of the
mean pressure ok, and the void ratio on the incremental stiffness and on the dilatancy
behavior is modeled by the factors f, and f; respectively. These factors are functions
of the current void ratio e and the pressure dependent maximum void ratio e¢;, minimum
void ratio e; and critical void ratio e, i.e.

o= (&) 5 @
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Herein n, hy, o, B, €, eq and e are constitutive constants and f; can be derived from

a consistency condition [4]. Factor & in Eqn. 1 and factor a. in Eqn. 2 are related to
stationary states which can be reached asymptotically under large shearing. @ depends
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on the so-called angle of internal friction ¢, and on the symmetric part of the normalised
stress deviator, i.e. 615 = (% + 67)/2 . The proposed function for @ reads [5]:

: LL AKS LK AKE kS XS
A SN Q. 8/3 3 (akl Okl + 0kl Ot Ymk _ GG (7)
3 — sin @ 1— 3675 012, 655/ (633 6%) i

Altogether the constitutive model includes 11 constants which are closely related to gran-
ular properties, i.e. they can be estimated from the grain size distribution, the grain
shape and the grain hardness [6]. For the present numerical investigations the following
material constants are used: e = 1.2, eqp = 0.51, e = 0.82, ¢, = 30°, h, = 190 MPa,
a=0.11, 8 = 1.05, n = 0.4, dsp = 0.5 mm, a, = 1.0.

MODELING THE INTERFACE BEHAVIOR

Apart from stress and displacement boundary conditions of a non-polar continuum ad-
ditional non-standard boundary conditions, 1.e. couple stresses and Cosserat rotation
boundary conditions, must also be defined for the present model. For rough and medium
rough boundaries and pure translatoric motion the following assumptions are made to
model the interface behaviour in a simplified manner:

i) Boundary particles of the granular body are permanently in contact with the adjoin-
ing structure, thus the relative displacement of boundary particles perpendicular to the
adjoining structure surface is zero.

ii.) The component u, of the particle diplacement parallel to the surface of the adjoining
structure is equal to or less than the parallel displacement of the adjoining structure
boundary wuy, 1.e.

up = fulp- (8)

Herein the dimensionless factor 0 < f,, < 1 denotes the fraction of u, which is transmitted
to the boundary of the granular body. With respect to (8) the relative displacement u,
then reads: u, = up — Up = (1 — fu) Up, which can also be represented as the sum of the
part uq, = fr up due to grain rotation and the part u,s = fs up due to sliding, i.e.

urzurr+urs:(fr+f5)ub' (9)

f, and fs in Eqn. 9 denote the fractions of u, which are transmitted as rotation and
sliding respectively. Herein the condition f, + fr + fs =1 holds for consistency.

iii.) Between the Cosserat rotation wy at the boundary of the granular body, the mean
grain diameter dsg, the factor f. and the displacement uy the following relation was pro-
posed [3]:

. Up
C=f —. 1
Wy, i T /2 ( 0)

With respect to Equ. 8 relation 10 for wy can alternatively be represented as a function
of the boundary displacement u, [4], i.e.

|5

Up

w dso/2
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—
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NUMERICAL SIMULATIONS

In the following the influence of the Cosserat boundary conditions at the top surface of
an infinite granular strip under plane shearing is investigated. For the numerical simu-
lation the present hypoplastic Cosserat model was implemented in a finite element code
using a four-node element with bilinear shape functions to describe the displacements and
Cosserat rotations within the element [5]. In the case of plane strain conditions only three
degrees of freedom remain for each node, i.e. u;, uy and ws, as shown in Fig. 1.

4 - TOP "T\Uzé
Height N32_’T2M31 ui ... Displacements
gra?nfutllalm(; wz?i ,‘_él ’;_311 w§ ... Cosserat rotation
layer i } & xoorcx oij ... Stresses
J I ol 304 ‘\i/ tij ... Couple stresses
y A

Figure 1: Modeling a plane layer of granular material with a Cosserat continuum.

All calculations are performed for a shear layer with a height of 4 cm and starting from

same homogeneous and isotropic initial states, i.e. e, = 0.6, 09 = —100 kPa and py = 0.
The bottom of the granular layer is fixed, i.e. u; s = U2z =0 and wi_, =0, and at the top
surface a vertical pressure of gy = —100 kPa is kept constant. A shear deformation is

initiated by prescribed horizontal node displacements u1, while the vertical displacement
is obtained as a result of the dilatancy behavior within the whole specimen.
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Figure 2: Influence of the Cooserat boundary conditions on the distribution of the defor- '
mation and of the void ratio.

Very rough walls can capture the adjoining grains so that neither sliding nor rotating
may occur. This case can be modeled by locked Cosserat rotations at the top surface, i.e.
ws, = 0. The simulation shows that the deformation is localized within a narrow zone in
the middle of the layer (Fig. 2a). The light strip indicates a higher void ratio as a result
of dilatancy in the localized zone. For shear displacements of 0.4, 1, 2 and 3 cm at the
top of the layer the distribution of the horizontal displacements u;, the void ratio e and
the Cosserat rotations w§ across the height of the layer are shown in Fig. (4a, 4b, 4c).
It can clearly be seen that the void ratio e and the Cosserat rotation ws increases within
the localized zone while outside this zone these quantities remain almost unchanged. The
distribution of the stress components o1, and o9, is influenced by the polar effect while
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Figure 4: Plane shearing between a very rough bottom and a medium rough top wall
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092 and oy are constant as required for the equilibrium (Fig. 4d and Fig. 4e). Since
012 7 09 the stress tensor in a polar continuum is non-symmetric.

In order to model a medium rough wall a certain coupling between the horizontal dis-
placement and the Cosserat rotation is assumed at the top surface. For the particular case
of w§, = ~0.025u,,/ds the results are shown in Fig. 2b and Fig. 4. It is obvious that
the thickness of the localized zone is smaller and the distribution of the state quantities
1s different to the results obtained for locked Cosserat boundary conditions.
Independent of the assumed Cosserat boundary condition the normal stresses and the
void ratio in the middle of the localized zone tend towards the same value, i.e. for large
shearing the state quantities tend towards 011 = 02 = 033 and e = e,.. At the boundary
of the localized zone the stresses and couple stresses are extremal and the void ratio in
this zone becomes greater than the critical one while outside the localizes zone the void
ratio remains almost unchanged. Thus, an initially isotropic material gets a transversely
isotropic structure during shearing.

CONCLUSIONS

The results obtained from the numerical simulation of plane shearing show that the hy-

- poplastic Cosserat model can be useful to investigate the interface behavior between a
granular body and a bounding structure. The Cosserat boundary conditions are suitable
to model the effect of the rotation resistance of particles along an interface. The predicted
displacement fields parallel to the direction of shearing are no-linear from the beginning of
shearing. For large shearing the deformation is localized within a narrow zone. For very
rough boundaries the localized zone occurs in the middle of the shear layer, otherwise it
is located near the smoother boundary.
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