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SUMMARY: The first step in the prediction of the permeability of RTM preforms is to solve
the Stokes flow problem in domains with an arbitrary cross-section. This can be used to model
annular flow parallel to a fibre or a tow as well as the transverse flow. Here the parallel flow
problem is solved using a least squares approximation for the boundary conditions while
minimising the dissipative work of the fluid. The convergence of the method is tested for
various penalty factors for the boundary interpolation and for various number of collocation
points for the boundary condition. Convergence is obtained easily. The algorithm is applied
on a circular and a square flow domain. The flow rate in a circular domain can be determined
in a closed form as well and is therefore used as a test case. The results of the square domain
are compared with the results of a FE-analysis. The effect of the eccentricity of the fibre is
analysed. The results of the circular and square domain show similar behaviour. The observed
behaviour corresponds with the behaviour found in the literature. The method presented is
fast and accurate. It is a useful method to analyse flow along and perpendicular to fibres. To
compute the transverse flow only minor adaptations are required.
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INTRODUCTION

Resin Transfer Moulding (RTM) is being applied increasingly as the manufacturing process of
high performance composites. Consequently, significant research effort has been devoted to
mould filling and fibre impregnation during this type of Liquid Composite Moulding process.
The main objective of the investigations is to improve the process-readiness of RTM.

Accurate flow simulations are useful tools in finding the optimal process parameters, for
example the flow rate and inlet pressure, and optimal gate and vent locations. Incorrect
process parameters or badly chosen gate and vent locations may cause the formation of dry
spots and voids in the preform, which has unacceptable consequences for the material
properties of the composite in terms of its strength and fatigue resistance. According to
Darcy, the flow through a porous medium is governed by the pressure drop over the medium,
the viscosity of the fluid and the permeability of the medium. Experimental and numerical
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methods to determine the permeability of a preform have been developed [1-11]. However, in
general, the experimental data suffers from instability and low repeatability and low
reproducibility [1]: despite the vast amount of experimental data, it is not possible yet to
produce reliable permeability data of a given preform. Nevertheless, experimental studies of
the factors affecting the permeability of a preform have revealed that the architecture of the
preform influences the permeability significantly [2-6]. These investigations consider the
effects on the permeability of the type of reinforcement architecture (unidirectional, woven
fabrics or other textiles) and the curvature of the moulds. All results confirm that the
permeability is not only a function of the overall fibre content, but certainly also of the
macroscopic and microscopic distribution of the fibres in the domain. Although there are
some examples of studies of the permeability in three dimensions, [7,8], most experiments
concern flat preforms, from which only the in-plane permeability can be extracted. When
analysing the resin flow in thicker preforms, these experiments do not provide sufficient
information. Apart from the experiments, several numerical models of the resin flow have
been proposed [8-11]. Although the models differ significantly on some aspects, all agree on
the fact a fibre texture has to be considered as a double porous medium: resin flow occurs
around the fibre bundles (meso scale) and inside the fibre bundles (micro scale). Poiseuille
flow and capillary flow respectively determine the flow characteristics. However, with
increasing fibre content, the influence of the capillary fiow has to be accounted for on the
meso scale as well.

The permeability is assumed to be known locally in the proposed numerical models. Different
methods are used to compute the overall permeability from the local permeabilities. The resin
flow as well as the fibre architecture on local levels is far less complicated than the overall
resin flow and fibre architecture. Therefore, relatively simple equations can be used to
determine the local permeability. The resin flow parallel or perpendicular to fibre bundles is
governed by the Stokes equation. The flow parallel and across arrays of cylinders has been
investigated extensively. The effect of the fibre arrangement has played an important role in
these projects [4,12-15]. Lubrication theory and capillary theory have been used to solve the
Stokes equation. Here, a method to compute the flow parallel to the fibre bundles is
presented. A circular and a rectangular domain are defined, containing a circular solid core,
representing an impermeable fibre bundle. In this geometry the effect of the fibre content on
the permeability can be studied by varying the relative size of the core. The effect of the fibre
distribution 1s examined by varying the position of the core within the external boundary.

In the first part the theory used is presented briefly. The Stokes equation is solved using the
general solution of a Laplacian differential equation. The coefficients of the general solution
are determined using a least squares approximation for the boundary conditions and the
concept of minimum dissipated work. In the following section the theory is applied on the
circular and square domain. The flow profile in the circular domain can be determined in
closed form and thus serves as a good test case for the approximation method. The paper is
finished with the conclusions.

THEORETICAL BACKGROUND

General Fluid Mechanics
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The fluid mechanics used is presented briefly below. The theory can be found in a more
elaborate form in many textbooks, among which [12,16]. In general a fluid problem is solved
by using:

- the conservation of mass;

- the impulse balance (Newton's second law);

- the conservation of energy;

- constitutive equations;

- boundary conditions.
The conservation of mass, also known as continuity equation, is given by:

Dr_ v.
== pV-u), (1)

with p the density of the fluid, 7 the time and u the velocity of the fluid. D/D7 denotes the
material derivative.

The conservation of momentum reads:

Du
_::Vo'+ : 2
P o o+pg (2)

¢ the specific gravity and o the stress tensor:
g=-p L+, (3)
with p;, the hydrostatic pressure and ¢  the deviatoric stress tensor.

The change of energy within the system can only be caused by a heat source or by the motion
of the fluid:
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with U the specific internal energy and g the heat flow. The last term in Eqn. 4 represents the
mechanical work. On thermodynamical considerations, an allowable velocity profile u,
satisfying the conservation laws of mass and momentum (Eqn. 1 and Eqn. 2), will satisfy the
condition of minimised dissipative work within the system.

The resin is assumed to behave Newtonian and to be incompressible. Since the flow rate is
low, the flow is assumed to be steady, uniform and laminar. Isothermal flow is observed.

The constitutive equation relates the rate of deformation to the stress. For incompressible
Newtonian fluids, this is given by:

g,=2ub, (5)

with £ the viscosity of the fluid and D the rate of deformation, defined as the symmetric part
of the velocity gradient L:
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The anti-symmetric part is defined as I, the vorticity.

The integration constants resulting from solving the differential equations above, depend on
the boundary conditions. Either Dirichlet or Neumann boundary conditions (or a combination)
can be assumed. Furthermore, the velocity is assumed to be independent of the axial
coordinate, whereas the pressure is assumed to be a function of the axial coordinate only.
Gravitation is not accounted for.

General Solution for Axial Flow
The general equations are reduced to a two dimensional problem, by applying the above
assumptions. The velocity field is expressed in terms of the axial velocity component only.

Using the momentum equation, Eqn. 2, and the constitutive equation, Eqn. 5, it can be derived
that the axial velocity field has to satisfy:

u(r,9)=——l” +y, (7)

with v an arbitrary function obeying the boundary conditions and:
Vip=0. (8)

Note that the cylinder coordinates (x,r,8) have been used to derive Eqn. 7. The problem is
now reduced to finding a function y , i.e. solving a homogeneous second order partial

differential equation. The general solution for w is [17]:

v =ay +bylnr + 3 (g, cosk® + b, sinke + ¢, coskO +d,r*sinke)
k=1
={F}-la}

with {F} the set of basic functions and « the vector of constants ay, by, ¢; and d;. These
constants are determined using the principle of minimum work. The total mechanical work is
found by integrating the last term of Eqn. 4 over the cross-sectional area of the flow domain:
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The axial velocity field, as defined in Eqn. 7, is found by minimisation of this dissipative
work. Two extra terms are added to satisfy the boundary conditions. A weak formulation is
used in which the boundary conditions only have to be obeyed in a limited number of
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interpolation points instead of on the complete boundary. The modified potential @ is defined
as:

Hip
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kh%ﬁy, (11)

with mp and my the number of Dirichlet and Neumann interpolation points, P; and P, weight
factors, Fr the basic functions at the boundary and u, the prescribed velocities and y,. the

prescribed velocity gradient normal to the boundary.

The coefficient vector {a} which minimises the dissipated work, is found by solving:
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Expanding Eqn. 12 yields the linear system:
[+ M, ]-{a}={R+ R}, (13)

with:
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The volumetric flow rate Q follows from integrating the velocity field over the cross-sectional
area. Subsequently applying Darcy's law leads to an expression for the permeability K:

k=s02) - 2] (Jutrohas as)

EXAMPLES

The algorithm presented in the preceding section is applied on a circular and a square flow
domain. The mathematical packages MAPLE and MATLAB have been used to implement the
algorithm and analyse the results. In Fig.1 both flow domains are shown. The effects of the
relative size of the core (the fibre content) and the eccentricity (the fibre distribution) were
analysed (see also [12]) in both domains.
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Fig.1: The cross-section of both flow domains.
Circular Domain

For the circular domain it is possible to solve the Stokes flow problem directly from the
conservation of momentum, Eqn. 2. With no-slip boundary conditions (Dirichlet boundary
conditions) on the inner and outer boundary (R, and R,,, respectively), the axial velocity is
found to be

1 d 2 2 R(;lul i Ri?] 5
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The least squares approximation has been tested for various penalty factors P;, for a various
number of collocation points for the boundary conditions and various order k of the basic
functions. The results are depicted in Fig. 2. The normalised pertneability K, is defined here as
the quotient of the permeability according to the least squares approximation and the
analytically calculated permeability. The fibre volume fraction is taken equal to 50%.
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(a) Penalties: - P; =1, P;<<1,-- P;>>1 (b) Number of collocation points on inner
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Fig. 2: The normalised permeability as a function of the order £ of the basic functions.
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Fig. 2(a) shows the normalised permeability using three different penalty factors P; and a
constant number of collocation points of 10 on each boundary. The solid line corresponds
with P; = 1 kgrssm™. The dotted line corresponds with P; much larger than unity, i.e. the
effect of the minimisation of dissipated work is negligible. The least squares solution starts to
deviate from the analytical solution only for a relative high order of the basic functions.
Increasing the number of collocation points will be sufficient to improve the solution. When
the effect of the minimisation of work is increased, i.e. choosing P; very small (dash-dotted
line), the solution converges to approximately 0.75. The smoothing effect causes the velocity
to be reduced to zero on the symmetry boundaries (the circular domain is analysed
between 4 € [O,iz/4] ). Applying Neumann boundary points on the symmetry boundaries

improves the solution. In Fig. 2(b) the number of collocation points is varied, with P; taken
equal to unity. The solid line shows the normalised permeability calculated with 2 collocation
points on the inner and 100 on the outer boundary. For the dotted line, 100 points are used on
the inner boundary and 2 on the outer. The dash-dot line is calculated using 2 collocation
points on each boundary. In this case, the number of collocation points is clearly more
important than their location.

The effect of the fibre location is shown in Fig. 3(a). Increasing the eccentricity e, leads to a
strong increase in the permeability. A random fibre distribution implies an increase of-75%
compared to a perfect fibre distribution, as shown by Fig. 3(b). The fibre content does not
influence this behaviour, as also can be observed in both plots of Fig. 2. The normalised
average permeability is defined here as:

J IO'K (ec )dQ g
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with Q_ the domain of possible locations of the center of the inner circle, o the distribution
function (here taken equal to unity) and K. the permeability for the concentric case.
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Fig. 3: Normalised permeabilities as a function of the eccentricity and of the fibre content.

However, a circular domain is no ideal representation of a preform, hence a more suitable
domain is analysed: the square domain.
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Square Domain

No closed form solution 1s available for the square domain. A finite element result from the
ANSYS/FLOTRAN package is used as a reference. Three dimensional elements with four
degrees of freedom per element (three velocities and one pressure) have been used. A value of
8.6:10°m” has been found for a fibre content of 50% and @ = 2m (see Fig. 1). The
permeability is now normalised using this value instead of the analytical value. Again the
least square solution has been analysed using various penalty factors P; and various numbers
of collocation points for the boundary conditions.

k(-] k[~
(a) Penalties: - P; =1, P;<<1,- P;>>1 (b) Number of collocation points on inner
and outer boundary: - 3/100, - 100/3, -

minimum, 2Xminimum

Fig. 4: The normalised permeability as a function of the order £ of the basic functiomns.

In Fig. 4(a) the normalised permeability is depicted as a function of the maximum order of the
basic functions for various penalty factors. The number of collocation points is taken high
(100 on each boundary). The contribution of the dissipated work (first term in Eqn. 11),
smooths the solution, but causes severe underestimation of the permeability for a low order of
the basic functions. However, divergence is avoided by the smoothing effect as the order
increases, whereas the solution for P; >> 1 starts tc diverge for higher orders. Fig. 4(b) shows
the influence of the number and location of collocation points on the convergence. Locating a
large number of collocation points on the outer boundary (dotted line) gives better results than
locating the majority of the points on the inner boundary (solid line), especially for higher
order basic functions. When the number of collocation points is taken equal to the number of
unknown coefficients of {a} and distributed equally over the boundaries (dash-dotted line),

convergence is quickly obtained. The accuracy is improved when twice the number of
unknown coefficients is used. The results do not seem to improve when more collocation
points are used.

Again the permeability has been evaluated as a function of the eccentricity, Fig. 5. Based on
the above conclusions the penalty P; is taken equal to unity, the order & of the basic functions
equal to 5. The number of collocation points is taken relatively high to avoid deviations due to
a shortage of collocation points. Although the solution has to be optimized, the general
behaviour, as shown for the circular flow domain, Fig. 3(a), is observed. The decrease in the
normalised permeability for eccentricities up to 50%, may be a result of negative velocities,
which can occur in the general solution. For higher eccentricities the large ratio between the
minimum and maximum distance between the inner and outer boundary causes divergences.



Increasing the order of the basic functions and increasing the number of collocation points are
likely to improve the results.

0 0.8
e {-]

Fig. 5: The normalised permeability as a function of the eccentricity.

CONCLUSIONS

The objective this analysis was to examine the effect of fibre content and fibre distribution on
the permeability of RTM preforms. To this end the flow parallel to the fibre in a circular and a
square domain was analysed. The method is fast and converges easily, provided a suitable
number of boundary collocation points and suitable penalty factors are chosen. The numerical
experiments showed that using a few times the minimum number of collocation points gives
acceptable results. With a penalty factor of the order 1 kg-s'm’ ? the solution converges with
increasing order of approximation k, without suppressing the overall flow rate. The fibre
content has hardly any influence on the increase of permeability due to the eccentricity. The
effect of the eccentricity on the permeability is shown to be relevant. The average permeability
increases up to nearly two times the permeability in the concentric case for the circular shaped
flow domain. Similar behaviour is observed for the square domain, although the solution has
to be improved yet. Subsequently a similar approach w ill be used for the flow transverse to
fibres, where again a two-dimensional Stokes flow problem can be analysed. The two
components will then be used as the building blocks for permeability analyses of more
complicated fibre architectures.
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