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SUMMARY: When thermoplastic laminated sheets are formed in a mould at high
temperature and subsequently cooled and solidified, they undergo distortion from the
moulded shape. This is due to the anisotropic thermal properties that cause differential
thermal contractions in different directions. For thermoplastic channel sections of uniform
thickness with curvilinear orthotropic anisotropy, an analysis given in [1] yielded a simple
formula for the change in channel angle in terms of the temperature drop and thermal
expansion coefficients in the orthotropic principal directions. In practice it has been found that
this formula is very robust, and gives good results for materials that are not usually regarded
as elastic. Here it is shown that the analysis extends to linearly viscoelastic materials to yield
the same expression for the change in channel angle. The analysis applies to any channel of
uniform thickness provided that the orthotropic axes are in the axial, through-thickness and
tangential directions. Moreover the main result is even more general, and applies equally to
thermoplastic-plastic and thermoviscoplastic solids. The only constitutive requirement is that
the strain can be expressed as the sum of a thermal strain and a mechanical strain, and that the
mechanical strain vanishes when the stress vanishes.
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INTRODUCTION

'Springback’ is an effect that occurs in the processing of fibre-reinforced thermoplastic
composite shells. Laminated shells of complicated shape are often formed by pressing stacks
of sheets of initially flat, unidirectionally reinforced, but differently oriented, fibre-reinforced
thermoplastic matrix material into a mould at a high temperature at which the matrix flows
freely. At the forming temperature the material is effectively fluid, although the deformation
is constrained by the presence of the fibres. After cooling, solidification and removal from the
mould, the product is usually found to have distorted from the shape of the mould. This
distortion is due to thermoelastic deformation that accompanies cooling to ambient
temperature after solidification at a higher temperature. Because the solid composite material
is highly anisotropic, both in its thermal and its mechanical properties, the amount of thermal
contraction depends strongly on direction in the material, which results in a change of shape
as well as the uniform coatraction found in an isotropic material.
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The sumplest case is that of a channel section, which has single curvature. For linear
thermoelastic deformations O'Neill, Rogers and Spencer [1] gave a simple analysis.
Considering channel sections of arbitrary cross-section and uniform (but not necessarily
small) thickness of linearly thermoelastic material that is curvilinearly orthotropic with
orthotropic axes lying in the axial, normal through-thickness and tangential directions (which
is the appropriate material symmetry for, among other layups, cross-ply and balanced angle-
ply laminates) 1t was shown in [1] that there exists a stress-free distorted configuration. The
principal result 1s that a channel section which at solidification has a channel angle 28 opens
by an angular displacement 2AB where
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where ¢ and e, are the thermal strains in the radial and tangential directions respectively

associated with fall in temperature from the solidification temperature to the ambient

temperature, and of course are directly related to the coefficients of thermal expansion in

these directions. It has also been shown [2] that this analysis can be extended to finite

thermoelastic deformations with similar simple results.

In practice the formula (1) has been found to be very robust, and to give good results for
materials that would not normally be regarded as behaving elastically. The purpose of this
paper is to provide an explanation for this observation. After a summary of the thermoelastic
solution we consider a quite general class of linearly thermoviscoelastic materials with the
same geometrical configuration and material symmetry, and show that for these materials also
there exists a stress-free solution with exactly the same displacements as in the thermoelastic
case. Further generalizations are then described, and it is shown that the same analysis
remains valid when the material has thermoelastic-plastic or thermoviscoelastic-plastic
response, and also for certain kinds of inhomogeneity. The basic constitutive requirement for
(1) to apply is only that the strain should be decomposable into two parts, of which one part
depends only on the temperature history, and the other part depends only on the stress history.

TBERMOELASTIC SPRINGBACK

It 1s convenient first to outline the theory of elastic springback of channel sections as
described by O'Neill, Rogers and Spencer [1]. Initially all vector and tensor quantities are
referred to a set of cylindrical polar coordinates (r, 6, z). In this system displacement
components are denoted by (#, v, w) and the components of the stress tensor  as

G, O,4 O
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In the first instance we consider a sector of a circular cylindrical shell of linearly
thermoelastic material bounded by the surfaces » = a and r = b and the planes 0 =3, 6 = -3, as
shown in Fig. 1. The material is supposed to have cylindrical orthotropic symmetry with the
orthotropic axes coincident with the r, 8, z coordinate curves. This is the appropriate
symmetry, for example, for a cross-ply or balanced angle-ply laminated shell. Then the stress-
strain relations can be expressed in the form
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are components of the infinitesimal strain tensor e, and s; are the stiffness coefficients that
define the elastic mechanical properties of the material. In the general case there are nine
independent coefficients s; for a material with orthotropic symmetry .The principal thermal
strains (e;,e,e3) are given as

[a (r)ar
a, (T )dr 4)

a,(T)dT
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where T is the temperature in excess of a reference temperature at which the undeformed
material is stress-free The reference temperature is here taken to be the temperature at which
the fluid material solidifies, so that T is negative when the material is in the solid phase. Also

13

e et A A 8 B B8 A 6 0 6 ks k]



ai(T), ox(T), a3(T) are temperature-dependent coefficients of linear thermal expansion in the
principal orthotropic directions.

These equations have solutions of the form

u=u(r0), v=ur0), w=wz), (5)
in which case
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The object is to determine zero stress solutions such that ¢ = 0. From (3) and (6) this requires

er‘/' = el ? 669 = e?_’ ez: = eS’ el‘@ = 0 (7)

These are four equations for the three displacement components u, v, w, but nevertheless (and
remarkably) they have the solution

u=re, v=-rl(e—e,), w=ze,. (8)
Since there is no stress the equilibrium equations are trivially satisfied.
In this solution the angular displacement of the plane 6 = const. 1s

v

20 ="=-6(¢,~e,), ©)
v

and so for a channel section with sector angle 23, the increase in channel angle 2Af is given
as

%:—(el—ez). (10)

In practice o, is usually considerably larger than oy, and 7 is negative, and hence e, is greater
than e, and so the channel angle increases as the material cools. Various other sections can be
constructed from straight segments and sectors of circular cylinders; for example the case of a

U-section formed from three straight segments and two 90" circular cylinder sectors was
described in [1].

This analysis readily extends to channels of arbitrary cross-section, such as that illustrated in
Fig. 2. For this case it is convenient to use the quasi-polar coordinates (&,¢,z) shown in Fig. 3.
Suppose that one surface of the section (for definiteness, the inner surface) is defined by a
curve C in any normal cross-section of the channel. Then the coordinate & denotes distance
from C along the outward normal to C, and ¢ is the angle this normal makes with a datum
plane, which is taken to be the plane y = 0 in a rectangular Cartesian coordinate system (x,y,z)
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Figure 2 A channel cross-
section of arbitrary shape Figure 3 Quasi-polar coordinate system

with its origin at the centre of curvature of C at ¢ = 0. Then & = 0 denotes the inner surface of
the channel, and for a channel of uniform thickness /4, the outer surface is £ = A. If p(¢) is the
radius of curvature of C at (0,¢,z), then (&,4,z) are related to (x,3,z) as

¢ ¢
x = p(0)— jp(n)sinnd77+cfcos¢, y =Jp(77)cosnd77 +&sing, z=z. (1D)

If p is constant, then the channel is a sector of a circular cylinder, and p,p,z become
conventional cylindrical polar coordinates. We now interpret (w,v,w) as displacement
components in the (£,¢,z) system, and denote stress and strain components in this system as
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There is a minor restriction on the allowed geometry of the section in that it must be such that
normals to C do not intersect within the section. The material is supposed to be curvilinear
orthotropic with the orthotropic axes coincident with the (£,0,2) coordinate curves; again, this
is appropriate for a cross-ply or balanced angle-ply laminate. In this case the stress-strain
relations are
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where the principal thermal strains (e;, e,, e3) are given by (4) and the s; and o are stiffness
coefficients and thermal expansion coefficients as before.

As before we seek a zero-stress solution of the form u = u(&,9), v = v(§,0), w = w(z) and it can
be seen that ¢ = 0 if

duo (¢)

u=eg+ulp), v=-—(e-e)lp@)+sip+—-—"— d

= e,z, (15)

where uy(¢) is the normal displacement of the surface £ — 0 and satisfies the differential
equation

LDy i)+ e = s LD

This has the solution, to within a rigid body translation
¢ .
uy($) = [sin(@ ~m){e,p(n) + (¢, — e, cos(@d —n)}dn,
0

or, after an integration by parts
¢

u($) = [{e, sin(g )+ (e, — e, pcos(@ — )} p(m)dn, (16)

0
The angular displacement is

av

P —(e, —e,)9, (17)

and so, exactly as for a circular section, the change in channel angle is given by

AB

,B :_(el—'ez)s (18)

where o = £/ at the ends of the section.
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These are exact solutions in linear thermoelasticity theory. Unlike, for example, the solution
for a heated bimetallic strip, they involve no residual stress in the deformed section. The
theory has been extended to the case of finite thermoelastic deformations [2] but this
generalization is of mainly academic interest and is not pursued here.

THERMOVISCOELASTIC SPRINGBACK

Now consider the same geometrical configuration of the channel section, but suppose the
material in its solid phase to be a linearly thermoviscoelastic solid, with curvilinear
orthotropic symmetry as before. Then the constitutive relations can be expressed as
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where 7 denotes the current tlme the material has sohdlﬁed atz= 0, and the current strain e(t)
depends on the temperature and stress at times T between © = 0 and t = #. The thermal strain
(es, ez, e3) is given in terms of the temperature history as

Ial(t~r,T(r))did7
; dr

e, | = ]‘az(t—T,T(r))?dr (20)
0 T

ja3(t—r,T(r))iT—dr
3 dr

This formulation assumes that the strain is linear with respect to the stress but allows
nonlinear dependence on the temperature. Here ¢;(¢-1, 7(t))are time-dependent coefficients of
thermal expansion, and J;(r-t, 7(t)) are the anisotropic creep compliances. If the thermal
expansion coefficients are independent of time, as is usually to be expected in practical cases,
then (20) simplify to become

Iom(T(r))——
€,
Byl < Jaz(ur)) —d @D
€,
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which is equivalent to (4).

We seek solutions in which the stress is zero from 7 = 0 to the current time £ From (19) this
requires

€s s e &y 0
w |=| €| % |=|0) (22)
= e, €s 4 0

By analogy with the themoelastic case, we look for solutions of the form
u=ul,g,t), v=v(&,9,1), w=w(zr). (23)

Then es = 0, ez = 0, and just as in the thermoelastic case we obtain the solution (15) and (16),
the only change being that (e;, e, e;) are now regarded as functions of z. Thus there exist
solutions in which the stress is identically zero throughout the cooling operation, and the
channel opening angle is given by (18) exactly as in the thermoelastic solution, and there is no
internal stress at any time. There is a requirement that the rate of cooling be sufficiently slow (
or the thermal conductivity sufficiently large) for spatial temperature gradients in the material
to be negligible.

FURTHER GENERALIZATIONS

It is clear by examination of the above analysis that the underlying reason why it succeeds is
the separation of the strain into a thermal part (e;, e, e3) which depends only on the
temperature history, and a mechanical part which depends only on the stress history. For any
constitutive equation with the property that the mechanical part of strain is zero when the
stress history is zero, the equations for the displacements reduce to (22), and have the solution
(15) and (16). Many constitutive equations, besides those for thermoelasticity and
thermoviscoelasticity, satisfy this requirement. For example any material with elastic-plastic
mechanical response with a yield surface that encloses the origin will undergo neither elastic
nor plastic deformation while the stress remains zero, and the thermal strain is then the only
contribution to the total strain. The same applies to a material with elastic-viscoplastic
response, or indeed a material with purely viscous mechanical response.

Furthermore, it is not necessary for the material to be homogeneous. For example, the solution
(15) and (16) for a thermoelastic material depends in no way on the stiffness coefficients s;;,
and so these may be any functions (subject to thermodynamic restrictions) of position.
Similarly in the viscoelastic case, the creep compliance functions Ji(z-t, 7(t)) may be
arbitrary functions of position, and the same applies to the mechanical response functions in
the other cases mentioned above.

However there are restrictions on any permitted inhomogeneity of the thermal expansion
coefficients. Zero-stress solutions exist if e; (and hence o3(1)) depends in an arbitrary way on
the coordinate z, but in general e; and e, (and hence a,(1) and o,(1)) must be independent of
position for zero-stress solutions to be possible. An interesting exception occurs in the case of
a circular cylindrical sector, where if a; and o ; have the forms

a,=a(l)+b(T)lnr, a,=c(T)+b(T)Inr (24)
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and correspondingly
I T
e = j la(T)+b(T)Inr}dT, e, = j {e(T)+b(T)Inr}dT, (25)
0 0
then it can be verified that the expressions (8), namely
i T
u=r[{a(T)+b(T)nrldl, v=-r6 [le(r)+b(T)nrlar, (26)
0 0

still give a zero-stress solution for any material in which the stain can be decomposed into a
thermal part and a mechanical part.

CONCLUSIONS

It has been shown that the analysis of the deformation of orthotropic channel sections that was
described in [1] for linear thermoelastic materials is also valid for a wide variety of
mechanical responses, including thermoviscoelastic, thermoelastic-plastic, viscous and
thermoviscoplastic behaviour, and moreover allows almost arbitrary mechanical
inhomogeneity. The main requirement for the analysis to apply is that the strain response can
be decomposed as the sum of a thermal strain, due to thermal expansion or contraction, and a
mechanical strain which remains zero when no stress is present. In these circumstances, there
exist zero stress solutions independent of the mechanical properties in which the strain 1s due
only to thermal expansion or contraction, and the opening of a channel section due to cooling
after solidification is given by the simple formula derived in [1].
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