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ABSTRACT. Constitutive equation are formulated for flow of fabric reinforced composite materials which show
linear viscous response at forming temperature. The effect of symmetry of the fabric archititecture is considered.

The theory is applied to the analysis of the ‘picture-frame’ test, and the paradox of different responses in different
shearing directions is explained qualitatively.

1.INTRODUCTION

During forming at temperatures above the melting temperature of the matrix, fibre-reinforced
composite materials have been successfully modelled as incompressible viscous or
viscoelastic fluids reinforced by one or more families of inextensible fibres. In the case of
unidirectional reinforcement there is a well-established theory of the mechanical behaviour
of such materials'~.

Currently there is interest in the case in which the reinforcement is provided by a woven
fabric. The corresponding theory for such materials is less well developed, although
contributions have been made by Rogers®, Johnson* and McGuinness and O Bradaigh’.
However, there does not seem to be any systematic investigation of the effect of fabric
architecture. That this can be considerable is illustrated by experimental results in a
‘picture-frame’ test described in °, which showed that for some, but not all, fabrics the shear
stress during forming depended on the shear  direction, as well as the magnitude and rate
of shear. This effect cannot be explained by any theory currently available.

In this paper we formulate a theory for linear viscous reponse that takes proper account of
the symmetries of the fabric architecture, and apply this theory to analyse the picture-frame
test. It is shown that for some fabrics the theory predicts different behaviour in positive and
negative shear in the picture-frame test. These fabrics include the satin weave which was
seen in > to have this anomolous behaviour.

2. BACKGROUND AND GENERAL THEORY

The deformation and stress are described in a fixed rectangular coordinate system, and all
vector and tensor components are components in this system. In a reference configuration, a
typical particle has position vector X (components Xy); at time ¢ the same particle has
position vector x (components x;). The deformation is thus described by equations

x =x(X,0), or xi=xi(Xpt) (GR=123) (2.1)

The velocity v (components v;) at x is v(x,f) and the rate-of deformation tensor D
(components ;) is defined by
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We consider that the composite material consists of a matrix material reinforced by two
families of fibres. A continuum theory is employed, in which the fibres are regarded as
continuously distributed, with the two fibre directions defined by unit vectors a(x,/) and
b(x,7) (components ;(x;,¢) and hi(x;,f) ). The fibres convect with the material and so, in
general, a and b vary both spatially and in time. The rate of change of a is given by
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Ddi = %y, g"' = (5, - a,-aj)ak—%- (2.3)
where §; denotes the Kronecker delta, and here and subsequently repeated suffix summation
convention is employed. An analogous relation holds for b.

It is assumed that the composite material is incompressible and incapable of e\tensmn in

the fibre directions. Theories based on incompressibility and tibre inextensibility have been

effective in analysing forming processes for uniaxially reinforced composites. The
incompressibility condition is

D = ovi/ox; = 0 (2.4)
and the fibre inextensibility conditions are
a;a;Dy = a;a;0vi/dx; = 0, bib;Dy = bibovildx; = 0, (2.5)
If (2.5) hold, then (2.3) simplifies to
Da;/Dt = a;0v;/0x;. (2.6)

The stress tensor is denoted by o (components ;). In quasi-static flows the equilibrium
equations

60,-,-/639- =0 (27)

are applicable. For a material subject to kinematic constraints such as incompressibility and
inextensibility, the stress can be expressed as the sum of a reaction stress or and an
extra-stress T, where o is a reaction to the constraints and does no work in any deformation
conforming to the constraints; for the constraints (2.4) and (2.5)

or = -pl+T.A+THE (2.8)

where p is an arbitrary hydrostatic pressure, T, and 7 are arbitrary tensions in the fibre
directions, I is the unit tensor, and A, B are tensors with components

A,‘j = aqj, B,J = b,‘bj. (29)
To complete the formulation a constitutive equation is required for the extra-stress <. It is
assumed that at forming temperatures the composite behaves as an anisotropic viscous fluid,
so that D is the only kinematic variable involved. The directional properties derive from the

presence of the reinforcing fibres. Thus a physically based model can be constructed by
making the constitutive assumption

t = 1(D,a,b). (2.10)
This relation must be form-invariant under rigid rotations, so T has to be an isotropic function
of its arguments. In addition, it is usual to assume that the senses of a and b have no

significance (the fibres do not have arrows attached to them) and hence t is even in a and in
b. Thus (2.10) can be replaced by

t = ©(D,A,B). (2.11)
The representatlon of a tensor function of three tensors is an algebraic problem whose
solution is known and can be read off from tables®’. In this paper we treat the material as a
linear anisotropic viscous fluid (analogous to an isotropic Newtonian fluid) in which t is
linear in D. Approximately linear viscous behaviour has been observed in some




unidirectionally reinforced composites, but others show prominent non-linearity. Extension to
non-linear viscosity and to viscoelasticity is discussed briefly in section 5.

The analogous theory for a linear elastic solid is well developed®®. Rogers? drew attention
to the correspondence between linear elastic and linear viscous behaviour, with the
infinitesimal strain tensor E corresponding to the rate-of- deformation tensor D. Spencer®
formulated the constitutive equation for an incompressible linear elastic solid with two
families of inextensible fibres (an earlier formulation® contains redundant terms). Replacing
E by D in® gives a constitutive equation for an incompressible linear viscous fluid stmilarly
reinforced as

G = —pl+ T3A + TpB + 21D + 2n1(AD + DA) + 2112(BD + DB) + 2n3(tr CD)(C + C).
(2.12)
Here C is the tensor with components a;b;, tr denotes the trace operation, superscript T
represents the transpose, and n,m1,M2 and n3 are viscosities which may be even functions of
a.b = cos2¢, and 2¢ is the angle between the two families of fibres. Rogers?, Johnson*, and
McGuinness and O Bradaigh® gave expressions equivalent to (2.12), but with T = na2.
Setting these coefficients equal results from assuming the two families of fibres to be
mehanically equivalent, which, depending on the fabric architecture, may or may not be
appropriate. This restriction was made explicit by Rogers®, but not by the other authors
quoted.
For some purposes it is convenient to express the constitutive equation not in terms of the
fibre vectors a and b, but their bisectors p and q, defined by
a = pcos¢—qsind, b = pcosd + qsing,
p=(a+b)2cosd, q=(b-a)2siné. (2.13)
and tensors P,Q, and M with components p;p;,q:q; and Ppiq; respectively, so that
A = Pcos?¢ + Qsin’p — (M + M7)sindcos,
B = Pcos?¢ + Qsin’¢ + (M + M7) sin$ cos ¢, (2.14)
C = Pcos?¢ — Qsin’¢ + (M — M7)sindcos¢.
This formulation has the advantage that the vectors p and q are always orthogonal, whereas
the angle between a and b varies during flow. In terms of P, and M, (2.12) becomes

6 = —pl+ (Ta+ Tp)(Pcos?¢ + Qsin’) — (T, — T5)(M + M) sindcosd + 2nD
+2(M1 + M2){(PD + DP)cos?¢ + (QD + DQsin’}
- 2(m —M2){(M + MHD + DM + M7} sindcos ¢
+ 213 {(tr PD)cos?¢ — (tr QD)sin’¢}(2Pcos?¢ — 2Qsin’¢).
(2.15)
3. THE PICTURE FRAME PARADGX

The picture-frame experiment was developed by McGuinness and O Bradaigh® to produce a
homogeneous time-dependent deformation in uni- or bi-directionally reinforced sheets, as a
means to study the rheological behaviour of composite materials in intra-ply shearing. In the
experiment an initially square specimen is subjected to a shearing deformation by a linkage
of four rigid bars aftached to the sides of the specimen. The reinforcing fibres are parallel to
the sides of the specimen. The deformation is by stretching along a diagonal of the specimen,



specimen

Figure 1. The picture-frame test Figure 2. Positive and negative shears

which deforms into a rhombus, as shown schematically in Figure 1. The deformation is not
quite one of pure shear, because the area of the sheet is not conserved and so, for an
effectively incompressible material, the specimen thickens during the test. An analysis of the
deformation was given in >, but for the present purpose it is convenient to proceed slightly
differently.

As shown in Figure 1, the sheet lies in the (x;,x2) plane, with the origin at the centre of the
square specimen and the axes lying along the diagonals. The fibres are parallel to the sides of
the specimen and during deformation are inclined at angles *¢ to the x,—axis. Initially ¢ = ¢o
and for an initially square specimen ¢o = n/4. The deformation is described by

cos ¢ " sin¢ _ . Sin2¢o I
1 Cosdo X2 =4 sindo *3 =X sin2¢ )
It can be verified that this deformation satisfies the conditions of incompressibility and fibre
inextensibility. The corresponding velocity field is

X1=X

vi ==X, csolzgo % = “xltand)%, v =X, ;zsq)d:) % = xztand)%%,
Pl smi?r:’fz‘;sz‘b g"}’ e cotzq)P-ft’l, (32)
and the rate-of deformation tensor is
—tan¢ O 0
D= 0 cotd 0 % (3.3)
0 0 —2cot2¢
This also conforms to the kinematic constraints.
The fibre direction vectors in the picture-frame test are
a = (—cos¢,sing,0), b = (cos¢,sing,0), 3.4)
S0
cos?¢ —cosdsing O - ¢os%¢  cosdsing O _\
A=| -cos¢sing sin’¢ O |, B=| cos¢sing sin¢ O |,
0 0 0 0 0o 0 |
(3.5)
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P=( 000 |, Q= 010 [, M=| 000 | (3.6)
000 000 000

Let /. denote the length of the sides of the specimen. Then from (3.2) the speeds of the
vertices A and B are

Vai=-=LsindDo/Dt, Vi = LcosdDd/Dr, (3.7)
respectively. By substituting from (3.3), (3.5) and (3.6) into (2.15), the stress is determined as
o = —p+(Ta+Tp)cos*d — {2ntand + 2(n1 + N2)sin2¢ + 4n; cos dsin 203 Dd/Dr,

o1 = —p+ (Ta+ Tp)sin*¢ + {2ncotd + 2(n; + 12)sin20 + 4n; sinsin203 D¢/,
2 = —~(Ta—Tp)sinpcosd — {2ncot2d — 2(M:1 — na2)cos2¢sind } Dd/Dt,
o33 = —p —4ncot2¢ D¢/Dt.

2

(o}

(3.8)
If the lateral faces of the sheet are traction-free then 633 = 0 and p is determined. 7, and 7}
are indeterminate unless additional edge boundary conditions are specified.
Suppose the sheet is deformed by forces of magnitude F; applied in the directions shown
in Figure 2a. Following the terminology of McGuinness and O Bradaigh’, this is termed

positive shear. By equating the rate of working of the applied forces to the energy dissipation
rate, there follows

2F4Va = (cuDn + 022D + 633033 + 2612D12)L2A, (3.9)

where % is the thickness of the sheet. Using (3.3), (3.7) and (3.8), and noting that the
constraints are workless, it follows from (3.9) that

F4 = hV {2n(tan®$ + cot*d — 1) + 2(m1 + M2) + N3 sin?2¢} cosec?p.  (3.10)

Alternatively, suppose the deformation is by forces Fp applied as shown in Figure 2b
(negative shear, in the terminology of *). Then a similar calculation gives
Fp = hV{2n(tan¢ + cot?d — 1) + 2(n1 + M2) + 13 sin*2¢}seco. (3.11)
Now (3.10) and (3.11) become identical if Fg, V5 and ¢ are replaced by Fa, V.4 and n/2 — ¢
respectively. Hence the theory predicts that the material responds identically to positive and
negative shears.

The paradox is that for some, but not all of the fabrics which McGuinness and O Bradaigh
tested in the picture-frame test, there were very different responses to positive and negative
shears. For a certain satin weave, the force for given velocity and displacement in positive
shear was nearly double the corresponding force in negative shear.

This anomaly cannot be explained by introducing nonlinear viscous or linear or nonlinear
viscoelastic behaviour. Any formulation in which the stress depends on the tensors A and B

and kinematic tensors (strain, rate-of deformation, etc.) will predict identical responses to
positive and negative shear.

4. RESOLUTION OF THE PARADOX

For a fabric reinforced by inextensible fibres, the mechanical behaviour is governed by the
properties of the matrix and the fabric architecture. The paradox cannot be resolved by
varying mechanical properties so it is necessary to examine the effects of fabric architecture,
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Figure 3. Fabric architectures, showing unit cells

and in particular the symmetries of particular fabrics.

McGuinness and O Bradaigh® performed experiments for positive and negative shear on
two different fabrics; a satin weave and a crowfoot weave. For comparison we also consider a
simple cross-ply configuration. These are all illustrated in Figure 3. In this figure the warp 18
horizontal and the weft is vertical, so that in the reference configuration the vector a is
directed horizontally from left to right and the vector b is upward vertical. The vector p is
directed diagonally from top left to bottom right, and the vector q diagonally from lower left
to upper right. A convenient way to visualise the symmetries of the weaves is to consider the
intersections between the warp and weft. Accordingly, in figure 3, a ‘+’ denotes an
intersection at which the warp passes over the weft. and a ‘-’ a point at which the warp
passes under the weft. For each architecture the weave has a unit cell, which is the smallest
element that is repeated periodically in the material: for each weave the unit cells are shown
in boxes in Figure 3. The unit cell is not unique, and for the satin weave two different unit
cells are shown.

The cross-ply configuration has many symmetries. It is unchanged by rotations about the
x3 -axis through 7/2 or m; by reflections in planes normal to the in-plane horizontal and
vertical and in planes normal to the bisectors of these directions. It is clear that such a
material must respond identically to positive and negative shears. The crowfoot and satin
weaves are more complex. Experimentally the crowfoot weave gave the same response in
positive and negative shear, but the satin weave gave different responses, so it is appropriate
to examine the symmetries of these weaves. Clearly the cross-ply unit cell has all the
symmetries mentioned above. The crowfoot weave is symmetric only for reflections in the
diagonals, and for rotations through 7 about the x3 —axis (which is the product of the two
reflections). The upper satin weave unit cell in Figure 3 has only symmetry for reflection in
one diagonal, but the lower illustrated satin weave cell is symmetric for reflection in the other
diagonal, so we expect the composite material to have both symmetries.

The key to resolving the paradox is the assumption made in Section 2 that the sense of the
fibre vectors a and b is not significant. This is equivalent to assuming reflectional symmetry
in planes normal to these vectors. This holds in the cross-ply configuration, so the theory of
Section 2 is valid (this configuration also requires n; = M3, so that the constitutive equation
proposed in ? and * is applicable). However the other weaves do not have this symmetry. The
solution is to revert to (2.10) rather than (2.11), so that the requirement for t to be even ina
and in b is dropped. Under this generalization all the terms in (2.12) are retained, but
examination of tables of tensor functions shows that two additional terms can be admitted, so
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that the constitutive equation becomes
6 = —pl+ T,A + T3B + 20D + 21(AD + DA) + 2n:(BD + DB) + 21;(tr CD)(C + C)
+214(CD + DC™) + 2n5(C’D + DC),
.1

or, in terms of P,Q and M
o = —pl+ (T + Tp)(Pcos?¢ + Qsind) — (7' — T5)(M + M7)sinpcosd + 2nD
+2(M1 + M2+ Ny + XD + DP)cos2d + 2(n1 + N2 — Na — Ns)QD + DQ)sin
=2{(M:1 - M2-n4+ns)(MD + DM')
+ (M~ N2+ N = Ms)}MD + DM)} sindcosé
+ 213 {(tr PD)cos?¢ — (tr QD)sin’¢}(2Pcosd — 2Qsin’¢).

42
For the picture-frame test, with D,P,Q and M given by (3.3) and (3.6), this becomes e
o1 = —p+(Ta+ Tp)cos?d — {2ntand + 2(1; + N2 + N4 + Ms)sin2d
+ 4n; cos?0sin 203 D/Dr,
622 = —p + (Ta + Tp)sin®$ + {2ncotd + 2(n1 + N2 — Ns — M3)sin20
+ 4ns sin®¢sin2¢3 D§/Dt,
612 = —(To — Tp)singcos ¢ — 2{(M1 — n2)cos2¢ — (N4 — Ns)sindpcos ¢ } Dy/Dr,
G33 = —p — 4ncot2¢ D¢/Dt.
4.3)

By calculations similar to those used in Section 3, there follows, for positive and negative
shears respectively

Fa = hV4{2n(tan?¢ + cot?d — 1) + 2(M1 + N2) — M+ + Ns)cos 24 + N3 sin®2¢} cosecd,

Fg = hVp{2n(tan?¢ + cot?d — 1) + 2(11 + N2) — (N2 + Ns5)cos20 + 13 5in?20}secd.

(4.4)
Because cos(n —2¢) = —cos2¢, these expressions are not unchanged if F, V5 and ¢ are
replaced by F4 V4 and n/2 — ¢ respectively, unless 4 + s = 0, in which case (3.10) and
(3.11) are recovered. If n4 + s is not zero, the responses to positive and negative shears are
different. Hence the picture frame paradox is explained if the more general constitutive
equation (4.1) is adopted.

This formulation takes no account of any symmetries of the material. Both satin and
crowfoot weaves are symmetric for reflections in planes normal to the p and q directions.
Therefore the constitutive equation must be unchanged if p is replaced by -p, or q is replaced
by -q, or both interchanges are made simultaneously. This is equivalent to requiring (4.2) to
be unchanged if M is replaced by -M. This can only be satisfied if the coefficients of
MD + DM’ and M"D + DM in (4.2) are zero, which implies that

M =M2, M4 ="Ns. (4.5)
For the satin and crowfoot weave materials, these substitutions should be made in the
constitutive equations (4.1) and (4.2), and also in (4.3) and (4.4). It is noted that four viscosity
coefficients, n,1;,Mn3 and n4 are needed to characterize the linear viscous behaviour of these
materials. The coefficient n4 can, in principle, be measured by observing the difference



between responses to positive and negative shear.

Experimentally, it was found? that for a crowfoot weave (but not for a satin weave) Ny = 0.
There does not seem to be any symmetry argument to account for this observation. It may be
significant that the symmetry of the crowfoot weave is more apparent than that of the satin
weave, but we see no obvious way in which this distinction can be made precise.

5. DISCUSSION AND CONCLUSIONS

A properly invariant constitutive equation has been formulated for a linearly viscous
fabric-reinforced material. This theory accounts qualitatively for the different responses of a
satin-weave fabric to positive and to negative shears in the picture-frame test. A query
remains in that the theory does not explain the experimental observation that the coefficient
n4-is zero for a crowfoot weave fabric. It may be that this coefficient is too small to be
detected in the experiment, or there may be some fundamental reason that requires it to
vanish.

This study has been confined to linear viscous behavior, but the same principles can be
applied to analyse non-linear viscous response. However the general non-linear viscous
theory will involve many response functions, whose experimental determination is unlikely to
be practicable, unless further simplifying assumptions are made. For example, a relatively
simple theory can be established by allowing the viscosity coefficients to be powers of rhe
rate-of-deformation invariant V(D,-J-Dij). Such a power-law relation was found in > to fit
picture-frame test data quite well in some cases.

Similar remarks apply, but more forcibly, to viscoelastic modelling. For some viscoelastic
formulations the same principles can be applied, but the results will be complicated.
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