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ABSTRACT

Some new aspects are introduced into the numerical simulation of the mold filling phase of the
Resin Transfer Molding process of composites manufacturing. The problem formulation is based
on homogenization techniques. On the microlevel, the well-known analogy is exploited in order
to determine the permeability tensor. The suitability of the cell-averaged permeability and of
solving the macrolevel problem on two levels is addressed in the case of the double porosity
problem. An algorithm allowing the determination of the progression of the resin front on the
microlevel is developed. Regarding the macrolevel analysis, a new approach based on an
analogous problem is proposed and determination of the resin front position in multiple-layer
preforms is presented. Results are obtained by the finite element code ANSYS.

1 INTRODUCTION

The Resin Transfer Molding (RTM) process has recently become one of the most important
processes of fiber reinforced composites manufacturing. The process consists of three phases: an
arrangement of fiber mats in a mold cavity, a mold filling by a polymeric resin and a curing phase.
Due to the large number of fibers and very low ratio of their characteristic cross-sectional size to
the size of the mold, direct numerical solution of the filling-phase problem is almost impossible.
Homogenization techniques are often used in order to reformulate the original problem in terms
of the microlevel (local) and the macrolevel (global, effective) analyses. If restriction to the
isothermal case is adopted, the resin flow can be viewed as slow flow of an incompressible
isotropic Newtonian liquid with high viscosity and constant properties. In this case the microlevel
and macrolevel analyses have forms allowing finding problems analogous with them, which are
included in many general-purpose commercial finite element (FE) codes, e.g. in ANSYS ([1-3]).

2  HOMOGENIZATION TECHNIQUES

Governing equations of the filling phase problem under the assumptions specified above are ([4]):
Vov=0 and p3' =~Vp+uav+F, 1)

where v, t, p, F stand for the velocity vector, time, pressure and the volume force vector,
respectively; p and U are the resin density and the coefficient of the resin viscosity. As usual
V =1{0/0x,,0/0x,,0/9x,}, x is the spatial variable, A=V-V and “ stands for the tensor

multiplication (with one repeated index if indicial notation is used). The time derivative in (1) is
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partial, as a consequence of the simplifying assumptions, however, usually even this term is
neglected and the filling process is taken as steady state (at each time stage). Fibers are assumed
impermeable, rigid and with perfectly fixed location. The resin surface tension and the air
pressure can be neglected and then the boundary conditions have forms ([4D:
at the resin front: 9f/dt+v-Vf=0, 5-n=0,
at the mold walls and the fiber boundary: v=0, (2)
at the injection gates: v=v, or p=p,,
where n is the unit normal vector to corresponding surfaces, o is the stress tensor and subscript 0
refers to the imposed values. The function f(x(t),t)=0 describes the moving front position.

Micro and macrolevel problems equivalent to (1-2) can be formulated exploiting either
asymptotic expansion ([5-8]) or local averaging ([8]) methods. It turns out, that the macrolevel
problem is, in fact, the well-known Darcy’s law for incompressible flows through porous media:

Vv’=0and v® = —(K-VP)/p, (3)
where the first relation is the macroscopic equation of the homogenization theory corresponding

to the continuity equation inside the saturated regions, v" is the vector of the Darcean velocity, P
is the macroscopic pressure and volume forces were neglected; K stands for the permeability

tensor and has to be determined from a microlevel problem. Both, v" and P, are obtained from
the microscopic values, v and p, by averaging, i.e. v° =(v) and P=(p), where () is the
averaging operator. The boundary conditions for the macrolevel problem are:
at the resin front: of/at+(v°-Vf)/¢=0, P=0,
at the mold walls: d0P/dn=0, (4)
at the injection gates: VD=(<V0>> or P=((P,)).
where ¢ is the porosity and ((.)) stands for the area average at the injection gates.

For periodic preforms, the asymptotic expansion method can be used to formulate the microlevel
problem ([5-8]). The first non-zero term in the asymptotic expansion of the velocity vector (for

the sake of simplicity with the square of the small parameter included), v‘*, is given by:

V(O) =_X:(Fm I ap(O) ]’
w ox,,

where X" is a characteristic solution of the microscopic equation of the homogenization theory,

fulfilling K, = <x1’“> .p'” is the first non-zero term from the pressure expansion and v° = <v(°)>

and P= <p(°)> . X" is, in fact, the velocity vector related to Stokes flow of the unit-viscosity
liquid in the (fully filled) basic cell, if either negative unit macro-pressure gradient or positive unit
macro-volume force in direction m is applied on the basic cell. Periodicity boundary conditions
must be imposed on ¥™ components and on the pressure or on the pressure reduced by the value

corresponding to the applied gradient. The main advantage of the microlevel problem is that the
problem is linear and the permeability tensor depends only on the geometry of the fiber mats.

3 MICROLEVEL ANALYSIS

The numerical calculation of the permeability tensor is still not very common and values obtained
from experimental measurements are usually introduced into the macrolevel problem. However,
ANSYS preprocessor and ANSYS Parametric Design Language permit an easy generation of
complicated geometries and the numerical determination of permeability values is relatively easy.




Since Stokes flow in a fully saturated basic cell has to be solved, the well-known analogy with
incompressible elasticity can be used ([9]). Continuity equation can be satisfied by introduction of
the Poisson’s ratio of the related elastic material, v*, very close to 0.5. Periodicity conditions can
only be imposed on the boundary displacements, since due to the variational formulation of the
problem, they enforce the periodicity of the boundary pressure, thus it is easier to prescribe the
unit macro-volume force than the pressure gradient. Permeability values for perpendicular flow
across aligned circular fibers with in-line arrangement were calculated and compared with
numerical results from [5], [8] and [10]. In calculations no hybrid formulation was used and only
small variations in the pressure values and no variations in the velocity (displacement) values for
different (close to 0.5) v' were obtained. The permeability results are acceptable already for
v'=0.4999 ([11}). In addition, recirculation regions can easily be detected from the results.

When the problem of double porosity (if fibers are in fact fiber-tows consisting of several fibrils,
[5], [10]) is addressed, several approaches are possible. E.g. the cell-averaged permeability, ‘K,
can be calculated ([10]) or the macrolevel problem can be solved in two levels ([3]), exploiting
the intra-tow permeability, 'K (within the fiber-tows), and the inter-tow permeability, 'K (the
fiber-tows are assumed as full), etc. ‘K can be calculated directly in the same way as the single
porosity permeability, only all the single fibrils constituting the fiber-tows have to be modeled in
the basic cell. For the perpendicular flow across aligned circular fiber-tows it was concluded in

[10], that a significant increase of ‘K with respect to 'K occurs for $,<0.4¢,, where ¢, and ¢,
stand for the intra-tow and the inter-tow porosity, respectively.

On the other hand, a representative permeability, ‘K, of a specimen with n fiber-tows (Fig. 1, no
dependence on the direction along the fiber-tows), determined by solving the macrolevel problem
in two levels, exhibits different properties. Let us estimate the filling time in this case. When
constant volume rate is imposed at the injection gate, then the filling time depends only on the
porosity. When the inlet pressure, P,, is applied, the filling time t° of one-dimensional specimen
of length D and longitudinal permeability K and the filling time t* of a circular fiber tow with
radius R,, surrounding pressure P, and radial permeability K can be calculated from:

tD:u_q)D_z and tR :},L;q)Rj_

2KP, 4KP

respectively. Summing up:

¢D~ E. q)iD- +2 (DtR; )

rKPo lKPO k=l 2tKPt.k
where 'K, 'K stand for the representative and intra-tow longitudinal permeability, respectively,
and 'K stands for the radial inter-tow permeability. It can be assumed that the filling of the fiber-
tows is directed by the pressure surrounding the fibers P, = Py(k—1/2)/n, yielding

0 _&  ORin< |

K 'K 2KD*Zk-1/2°

&)

where obviously

R 1-
: =—¢ and ¢=1-(1-0:)(1-6).
D° 7n
Let us take D=1. 'K and 'K can be introduced into (35) in their analytical form from [12] (for
simplicity no hybrid model, but only junction of lubrication (for porosities less than 0.55) and cell

method results (for reminding porosities) was used). Adopting 17 = (1—¢, ) -0,)/ (nmnz), where
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I, is the radius of a single fibril and m is the number of fibrils in a fiber-tow, the dimensionless
representative permeability "Kn® can be expressed from (5) as a function of ¢,, ¢,, n and m. 'Kn’
(full line) is compared with "Kn® for different ¢, (dashed lines) in Fig. 2. The curves (n=100 and
m=100) are plotted in logarithmic scale and with respect to ¢,. It is seen that the significant
decrease of 'Kn” with respect to 'Kn® occurs especially for low ¢,.

It is thus obvious, that to the double porosity problem must be paid a special attention.
Furthermore, the permeability calculation assumes fully filled basic cells, however, the void
formation is originated at the microlevel. Due to these two facts, it is worthwhile to study the
progression of the resin front at the microlevel. With this purpose an algorithm suited for ANSYS
(exploiting the ANSYS Parametric Design Language) was developed, so far only for 2D
problems. The new resin front position is calculated directly using the free boundary condition.
At time stage t=t, the front shape is approximated locally by a circle at each nodal point (using

two adjacent points) and a local coordinate system is introduced at this nodal point with axes in
normal (x,) and tangential (x,) directions to the front. Then, for X,=g(X,) being the front equation

in the local coordinate system, it follows from the free boundary condition, that:

Vn _Vl_a—g—:vxx :%‘
X, ot
If backward difference method is used for the time derivative, then simply:
Xn.tk_, = Xn.tk +(tk+1 _tk)vn (6)

at t=t,,,. At each time stage it is thus necessary to solve the linear analogous problem and then

the algorithm generates and remeshes the new filled domain exploiting the new nodal points
positions from (6). Therefore, the algorithm is stable and not time-consuming.

The algorithm was verified on the example of Stokes flow between two rigid plates for a
parabolic and a uniform inlet velocity profile. The parabolic velocity profile was maintained while
the uniform one was transformed along the specimen to the parabolic one (Fig 3-4). The flow
front shape was stabilized in both cases on the same shape (Fig. 4); results thus coincide with the
theoretical predictions. The resin front progression was then studied in the basic cell of a
perpendicular flow across aligned circular fibers with in-line arrangement (¢=0.804), velocity
profile corresponding to the steady-state situation of the fully filled cell was imposed on the left
part of the cell. Results are plotted in Figs. 5-6 for different time stages, corresponding to one of
the initial stages, to the stage when the resin front touches the fiber, when the front part is fully
filled and when the upper part of the front reaches the end of the cell. In this stage it is seen, that
the part behind the fiber is not yet filled, but the velocity distribution resembles the steady-state
situation in the fully filled basic cell.

Non-linear effects can be introduced into the algorithm by generalization of the analogous
problem (linear incompressible elastic problem), but then each time stage would require a non-
linear analysis. Central difference algorithm for the time derivative could be also implemented.
Moreover, the algorithm can also be used for the purposes of the macrolevel analysis.

4 MACROLEVEL ANALYSIS

Problem (3) can be reformulated. The equation V-v® =0, valid inside saturated regions, can be
extended to a form derived e.g. in [13], which allows for a direct determination of the front
position at each time step. Then the Darcy’s analysis resembles the heat transfer analysis ([14]):
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‘ot
vP(x,t)=—(K(x)- VP(x,t))/u, qx,t)=-T(x) VO(x, t).

Y and s, denote the resin specific weight and the saturation in the porous medium; p.. U, q, T and

v[¢(x)§s(x,t)+vv”(x,t) =03 0. L U, )+ qlx.t)=0,

© stand for the density, internal energy, heat flux vector, thermal conductivity tensor and the
temperature, respectively. The boundary conditions (4) do not have to be reformulated, only the
free boundary condition can be omitted.

Since the saturation, s, is restricted to the interval [0,1], the same kind of restriction must be
ensured in the analogous (heat transfer) problem, thus U must always belongs to the interval
[0,0]. A fictitious medium has to be introduced, as it is described in [11]. The relation ([13])

d 0 d

= U(x,t) c(x,t)at O(x,t), where c(x,t) 7= U(0(x,1))
can be exploited (c being the specific heat) at this point. Furthermore, a front region with finite
width has to be defined. Under assumption of linear “heat gaining”, c is piece-wise constant with
two different values, non-zero (c=c,) and zero (c=0) defining like that two regions. They are: the
region where the fictitious medium is not yet “fully saturated” (including the front region, where
the medium already started to gain heat) and the region where the medium is already “fully
saturated”. In order to model such situation, an initial temperature, ©, must be introduced in the

fictitious medium, and a temperature, O, that will correspond to the “saturated state” has to be
stated. It holds ¢(x)=(0,-0;) ¢,(x) and the front region is characterized by ©< (©®,, ©,]. The

central difference method is necessary to use in the numerical solution, due to the discontinuity in
the time derivative of the internal energy.

The main advantage of the approach proposed above is that the position of the resin front is
solved directly and that the FE code ANSYS can be used in the RTM filling-phase simulation,
bringing large variety of the FE and a powerful postprocessor allowing good visualization of the
results. Progression of the resin front in example described in [15], whose results are compared
there with experimental measurements, is plotted in Fig. 7, together with the FE mesh and isobars
for t=105s (characteristic dimensions of the mold are Im and 0.5m, 0=0.89, K/u=3.41e-8 m s/kg
and the inlet flow rate is 3.14e-3 m’/s). The numerical saturated area is compared in Fig. 8 with
the analytical prediction. Front progression in orthotropic preforms is plotted in Fig. 9 for the
ratio of the principal permeabilities K,, /K, =2 . The ratio of the principal ellipsoid axes exhibit

excellent coincidence with theoretically predicted P ([14D.
S MULTIPLE-LAYER PREFORMS

Typical specimens are relatively thin, allowing the macrolevel problem to be stated only on a two-
dimensional surface. However, fiber mats consist of various (macroscopically homogeneous)
layers, stacked together, whose directional properties are usually very different. In order to
restrict the analysis to a two-dimensional surface, another homogenization step must be done in

the transversal (thickness) direction, yielding a thickness-homogenized permeability "K.

The analytical solution of "K on a ful]y saturated layered basic cell, under periodicity boundary
conditions results in "K="K, where “K is the thickness- averaged permeability. However, in [16]
the difference between the unsaturated ( K) and saturated (“K) in- plane permeability is verified
experimentally and in [17-18] analytical determination of "“K is presented.
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In [11] the calculation of non-uniform front characteristics is proposed differently than in [17-18].
The correctness of "K="K is justified in the sense, that if theoretical predictions of the flow front
position are required, “K and characteristics of the non-uniformity calculated using the approach
proposed in [11] are sufficient. Two regions: the homogenized region and the transition region,
where the transversal flow is trying to equilibrate the flow into the homogenized state, can be
distinguished in the layered specimen. Let us restrict ourselves to a two-layer specimen (no
dependence on one of the layer direction) with equal thicknesses and constant porosity.

In the homogenized region the flow takes place only in layers direction with constant but
different velocity in each layer (Fig. 10). The pressure is independent on the transversal direction

L] 1
(Fig. 11), thus the ratio of the resin velocities in layer 1 (1 v™") and in layer 2 (sz) is ZVH =%

justifying that the homogenized region is sufficiently described by “K.

The characteristics of the transition region, “d, 'd, *d (the notation is specified in Fig. 11) and so

the flow front difference, *d-'d, do not depend on the distance from the injection gate,
consequently do not depend on the transition pressure, P, which is defined as the pressure on

the interface between the two regions. The pressure distribution at middle axes of layer | and 2,

'P(x) and *P(x), can be approximated as plece wise linear with different slopes in the
homogenized and transition regions (Fig. 11, P(x) and P(x) stand for the pressure distribution
at middle axes of the layered and the homogenized specimens, respectively). “d="d, while
('d+*d)/2# "d. In the calculation of the transition region characteristics it is assumed that if the
homogenous region is removed and the filling process starts from the prescribed transition
pressure, P, then it takes time, t , to fully form the transition region. The mass balance ([17-18])
can be written ('K<’K) as:

v v=t vy, (7
where 'v, *vand *'v are the volume rates in the transition region longitudinally in layer 1, in
layer 2 and in direction from layer 2 into layer 1, respectively. The pressure gradient originating
'y can be expressed in terms of the area of the pressure difference, 2P(x)—'P(x), which is

P (2d(t}-'d(t))/2. Then:
(e KD 2y B
S

Total volumes of the flowing resin can be calculated by time integration over the interval [0, t,_]:

i 3 LR,

T
o Bty o 2Rehte a2 (2a- d)P"t" K
dp du
where for the sake of simplicity 'd="d(t, ) and *d="d(t ) 18 used. It must hold:
'V+* V='dh¢ and *V -*' V=2dh¢. (8)

(7-8) with t=t _ substituted form the basic equations to be solved. The solution is:

and

3ouh® | h  [*K+49'K ++/2K? +982K'K+'K’
Prrtrr = ’ d= T
4K 2410 K
5h ’K+'K +v7K2 +98°K'K+'K>
210 [Tk K + 49 K+ VK + 98K K+ 'K
Let time t, be given, then the resting non-uniform characteristics corresponding to this time are:

(9)
Zd:
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In Fig. 12 the numerical dimensionless flow front difference (*d-'d)/H from comparative example
with "K/u=10 m’s/kg, 'K/u=2 m's/kg, *K/u=8 m’s/kg, P,=5¢-5(Pa), $=0.5 and h=H/2=0.05m is
compared with the results from [17-18] and formula (9), plotted with respect to 'L/H ('L being
the total saturated length in layer 1). It is seen that the coincidence of (9) with the numerical
results is very good; the error increases with the difference between 'K and *K.

6 CONCLUSION

In this paper the utilization of general-purpose commercial FE codes, particularly ANSYS, is
demonstrated. The utilization is made possible by stating an analogy between Stokes flow and
incompressible elasticity and between Darcy’s problem with moving boundary and transient heat
transfer problem. Moreover, an algorithm allowing determination of the resin front position at
microlevel is developed, which will be used in studying of some particular problems, especially of
the double porosity problem. On the other hand, the approach to the progression of the resin
front and very good visualization of the results at macrolevel was utilized in the study of multi-
layer preforms.
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Fig. 2 - Comparison of 'Kn~ with "Kn for various ¢,={0.3, 0.4, 0.55, 06, 0.7, 0.8} of the specimen from Fig. |

Fig. 3 — Stokes flow between two rigid plates, parabolic inlet velocity profile (above) and uniform inlet velocity
profile (below)
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Fig. 4 — Stabilized velocity profiles and flow front shapes in the example from Fig. 3, no numerical values are
shown, since this is only a comparative example
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Fig. 5 - Resin front progression in the basic cell of perpendicular flow across aligned circular fibers
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Fig. 6 ~ Horizontal (above) and vertical (below) components of velocity in last three stages from Fig. 5 (no
numerical values are shown, since this is only a comparative example)
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Fig. 8 — Saturated area in example from Fig. 7 obtained analytically ' . . .
- Fig. 9 - Isobars in orthotropic preform
and numerically

134




homogenized
f specimen
homogenized : | TK=(K+K)/2
region transition
region
1
layer 1, 'K o layered
layen2, K it specimen

Ptr
"D “P(x)
: “P(x)
LL=HL ]P(X) /

Fig. 11 — Pressure distribution along the specimens and the specification of homogenized and transition regions
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Fig. 12 ~ Flow front difference obtained numerically and analytically in the comparative example
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