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ABSTRACT

In this paper, we are going to concentrate on the injection stage of the LCM process (Liquid
Composite Moulding), in fact on the flow through a fibrous structure. Before to make a
numerical simulation, it is necessary to present the approach to describe the flow
displacement through a saturated porous medium. We introduced the problem of the
reinforcement’s deformation in order to give the necessary elements for the interpretation of
the mechanism of flow propagation through a porous medium. So, the medium will be
considered as saturated, deformable, porous and the traditional tools of mechanics of
continuous media will be used to describe the behaviour of this solid. We give a first

' approach relating to the local variation of the porosity problem from a thermodynamical
analysis. The constitutive law of the viscoelasticity medium is obtained and is integrated in a
global approach that allows us to explain the coupling between the fluid and the skeleton of
the reinforcement material. Examples of experimental studies are presented introducing a
unidimensional configuration in porous media. An experimental study allows us to analyse
the local porosity variation’s behaviour.
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INTRODUCTION

For about thirteen years, LCM (Liquid Composite Moulding) processes have largely
| developed both on the technical aspects and on physical phenomena modelling. The general
principal of these processes consists in injecting a fluid (usually resin) into a fibre
reinforcement that constitutes a porous medium. Hence the study of resin flow can be
generalised to flow in porous media. Various couplings of phenomena appeared among
rtheological, thermal, chemical and elastic properties. Lately we realised that elastic
behaviours had to be clarified since new processes such as CRTM and VARI become more
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common. Hence one needs a deeper understanding of characteristics of compressibility and
relaxation of fibrous structures.

The need for efficient simulation softwares is increasingly important for industrial
applications. The numerical programming of these softwares uses very simple physical laws.
The porous medium is indeed considered as completely saturated, deformable yet the
elasticity laws are quite simplified. In the literature, only empirical or semi-empirical models
are found that do not allow any link with the underlying physical behaviours. In order to reach
a proper analysis of the later, one must take deformation problems into account for both dry
and saturated reinforcements. This works provides with preliminary considerations about the
modelling of these phenomena.

1. FLOW THROUGH A DEFORMABLE POROUS MEDIUM

Before developing the behaviour law that will be used in our modelling, it is important to go
back on the various laws governing fluid-structure interaction in our problem. In this paper,
solely the isothermal part of this development shall be presented.

To do so, Biot’s [1] theory will be presented. We now consider the study of porous media
saturated by a fluid. Saturation aspects will not be taken into account. On this aspect, works
are being validated and were recently published by Henzel [2]. Unsaturated media only differ
by the introduction of a third phase (air bubbles) in the formulation of flow in deformable
porous media.

For this kind of a problem two approaches can be carried out. The first one uses
homogenisation procedures that allow to go to macroscopic laws from microscopic
considerations. The development of these methods can be found in the work of Suquet [3].
The second approach consists in assuming the concepts and principles of continuum
mechanics are applicable to macroscopic and measurable entities. This is an older approach
and was developed by Biot [4]. We chose to go along that way for this is a more physical
description. The main hypotheses will be presented concentrating on the expressions adapted
to our application as presented in Bréard [5]. Before going any further, measurable quantities

will be presented as shown on Fig. 1.
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Fig. 1: Modelling of the homogenised flow

212




We recall that motion description can be based on two different approaches. In the
Lagrangian representation, one focuses on the history of a medium’s region with a fixed
identity. Whereas, in the Euler representation, the medium’s characteristics at a point are
rather considered. Movement mathematical laws formulation is often easier with Lagrange
variables. Yet, the second type of description has been used because the resolution of this
practical problem is usually easier with Euler’s formalism. In this study, at the microscopic

scale, a part of the medium i1s the locus of various displacement fields (Fig. 1) : u; the
preform’s displacement field (if it is deformable) and v, the fluid’s displacement field.

Consider a spherical elementary volume centred at M. ¢ is defined as the ratio of the fluid
volume and the total sphere volume. If ¢ =1, the sphere only contains fluid and only solid for
@ = 0. For a set of spheres, which radius rises up from the same centre point M, ¢ statistically

tends towards a finite value that can be considered as reached for a radius 7y. This ¢ value is
called structure’s porosity, around point M. The volume corresponding to 7y is called
Representative Elementary Volume (REV).

_Vaol,

=1-TvF =
¢ Vol,

(1)

with 7vF the volumic fibres rate, Vol, the void volume (pores), Vol, total REV volume. Bear
[6] defines different domains according to ry. A porous medium will have a homogeneous
porosity distribution if ¢ has the same value on every point of the medium. Also, the porosity
being the surfacic rate of fluid taken on a disc with radius » greater than r, is independent
from the orientation of the disc centred on point M. ry is the spatial scale allowing to build, in
the domain, a continuous medium model : considering an elementary volume around point M,
with a radius smaller than 7y, the scale is microscopic, and the material heterogeneous.
Conversely, for radius greater than ry, we are in a macroscopic homogeneous scale. We will
hence assume that continuum mechanic principles and results apply. In both cases, 7y is much
smaller than a characteristic dimension of the studied system.

To complement this model, a domainQ ,, (M), centred on M, whose characteristic scale is
greater or equal to rp will be considered. The saturated impregnation at M notion is extended
to all the pores included in Q,,, . On the Q ., (M) domain, three macroscopic displacement
fields will be defined. U(M,¢): the displacement vector macroscopic mean in the solid part
of Q. , V(M,?): displacement vector macroscopic mean in the fluid part of Q,,, (V is
prolonged by the 0 value in the non-impregnated domain)and W(M,¢): filtration vector mean
in Q,., or relative displacement vector of the filtrated fluid part of Q,,, versus the solid
part, where W 1s defined by the relation W,(M,?)=V,(M,t)-U,(M,t). Similarly,
macroscopic stress and strain are respectively defined by (o', p) and (&,,6). We will come
back on the definition of these later on. These physical quantities, denoted by a capital letter,
e.g. X, are defined as macroscopic values over the domain Q,,, such as

i

X(M.,t) =

_[x(M’t)d‘QREV (2)

REV ‘QRL" 14
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In the sequel, we shall only work on the REV scale of this continuous model. As two states
(phases) coexist in this space, we talk about a biphasic model. There is a solid skeleton
saturated by a fluid phase. The mechanical properties of such a structure depend on intrinsic
skeleton and fluid properties and on the interactions between those phases.

The porous medium was defined as a continuous biphasic medium. Under the influence of
external forces or/and of pressure gradients of the saturating fluid, the porous medium will

change its shape. The observable deformation is, in fact, the skeleton’s (&) and this is the

one that should be described. This description is absolutely identical to those carried out on a
classical continuous medium.

With the small displacement hypothesis for the solid part, only first order terms will be
retained. Note that this does not apply to the fluid phase. Notwithstanding, it is sufficient to
consider slow movements for which Darcy’s Law [7] is suitable to describe the filtration
displacement through the skeleton.

Fluid volume variation
From the fluid flow rate through S and with Green’s Theorem we get the following equation:

JWL.n,.MS = J (W), d02 3)

The quantity (¢W,) , then corresponds to a relative flow rate towards the exterior of €2 a time
t. Hence we define
O(M 1) =—(W)) ; 4

as the fluid volume variation around a given point M at time ¢. Filtration displacements, given
by the field W, are defined using 6.

Mass conservation
Since, in our case, both solid and fluid phases are uncompressible, the corresponding mass
conservation equations can be written as follows:

fluid: G+ (@V), =0 5)
solid: —¢+((1-¢)U,), =0

The continuity equation for the whole domain is defined from the relative fluid displacement
W and equations (5), leading to:

(¢W:)l =—6= —ékk (6)

where ¢, is the trace of the skeleton strain tensor that can depend on the saturation of the
medium. This saturation phenomenon can also be taken into account in the continuity
equation. In unsaturated flows the porosity variation term associated to fibre rearrangement
within the fabric is neglectible regarding the first term involving the saturation degree
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variation. Now, this phenomenon will not be considered and we will assume that the medium
is fully saturated.

Motion quantity conservation
The flow goes towards the exterior through the surface S of a medium containing a fluid
phase ¢S and a solid phase(1—¢)S. As the filtration vector was defined, the considered

filtration velocity is hence W, namely the Lagrangian flow. The flow through the surface can
hence be expressed as the filtration velocity vector (Darcy’s velocity : g) :

q;:= ¢W (7

So, flow through porous media is described by Darcy’s Law:

e
q; =¢W, = ——;’p,,, (&)

Where g, is the average velocity, u the viscosity and p ; the pressure gradient of the fluid. It

is valid in permanent regime. Unsaturated flows are usually considered as quasi-stationary
phenomena, a succession of stationary states.

2. MODELLING THE HOMOGENISED PROBLEM

In soil mechanics, with the full saturation hypothesis, Terzaghi’s Law [8] is frequently used.
It consists in decomposing macroscopic total stress o; into effective stress o', that act on the

solid skeleton and hydrostatic stress (— pd,;) acting on the fluid phase (Fig. 1), with the
relation:
0; =0';~PY; ©)

Terzaghi’s law is more restrictive that Biot’s theory. Indeed, in Terzaghi, this leads to
decoupling between fluid and solid behaviours. To evaluate effective stress, the medium is
assumed to be fully constituted of the solid phase and then fluid pressure effects are
subtracted. The fluid behaviour considers only its volumic dilatation which corresponds to the
separation mentioned beforehand. It should be brought up here that the strain tensor g; 1Is
related to the average or macroscopic displacement of the solid-fluid ensemble of the REV.
This tensor is not related to the only solid phase. Furthermore, Biot’s theory solely applies to
small displacements and & is considered small as well as the fluid displacements.

Terzaghi’s law, compared to Biot’s theory, assumes that the fluid action can be considered as
an exterior force acting on the solid skeleton. The law (Eq. (9)) injected into the equilibrium
relation leads indeed to

oy,;~P;=0 (10)

The action of the fluid on the solid part being transduced by fictitious volumic forces of
intensity (—p ;) Hence, under the small strain hypothesis for both solid and fluid
components, Terzaghi’s law is valid in a more restrictive hypotheses context than Biot’s
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theory. However, it can be very useful in some flow conditions. The decoupling hypothesis
allows indeed to study large fluid movements independently of small strains of the skeleton.
To do so, the fluid pressure field is determined with Darcy’s law and the fluid mass
conservation law. Integrating this pressure field into Eq. (5) one obtains the equilibrium
equations for the solid phase whose behaviour law can be chosen as suitable. In our case, we
will consider the consolidation model as in Biot [4]. The coupling will be given by the
following relations:

{ oy, U)=p, an

(Ki/'p.,i ),,- ==&, (U)

o', comresponding to the material’s behaviour law (with o, =07 ~pd;) and

&; = %(U ot U“) The unknowns U and p are functions of M and t, M being a point within
the bounded domain (2. The boundary conditions will depend on each individual problem
and could be among p|. =p, K;p, -nj}r =0, U|.=Urand o, -nj‘r =0o,, I being a

portion of the boundary surface S decomposed into complementary portions. Some authors
like Auriault [9], Coussy [10] have discussed about the resolution of such equations.

3. A VISCO-ELASTICITY MODEL FOR POROUS MEDIA

The aim of this paper is not to give a complete resolution scheme of such a problem but to
propose a behaviour law well adapted and physically based. The cause of dissipative
mechanisms observed experimental studies must be looked into absolute local movements of
both fluid and solid phases. We will try to model this phenomenon introducing viscoelastic
models. Indeed, many authors as Cai [11], Kim [12] and Gauvin [13] proposed models for
fibrous preforms compaction and relaxation. However, these are often linked to empirical or
semi-empirical considerations.

The whole approach will not be presented, but only the global shape of the proposed model. It
will be defined as follows, according to uni-dimensional compaction (constant speed &, ) and

relaxation (imposed strain &, ) experiments. The medium is still considered as homogeneous.

Our modelling concentrates on the average dissipation in the REV from a macroscopic point
of view, without separating both phases contributions. The displacement is hence a
macroscopic average on the fluid-solid ensemble as introduced previously. The origins of this
dissipation are many, besides Biot-like phenomena. Most likely mechanisms are linked to
capillary forces, friction between fibres, local fluid movements,... It is useless for us to
consider all of these effects. This is why only the simpler models will be considered, in
particular linear viscoelastic models. They are well-adapted to fast imposed stress variations
such as a flow rate step or a preform compaction. These models need the knowledge not only
of present stress and strain values but also of their history. These are memory models. Hence,
it is essential to study their delayed behaviour, e.g. the time effects such as those linked to

strain velocity (£,). This model is only valid for a unidimensional behaviour. It will be

generalised later on but readers may already refer themselves to works of Salengon [14] and
Lemaitre [15]. Rheological models for viscous dissipative phenomena have been used as a
first basis. They will be represented by the following arrangement in Fig. 2.
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Fig. 2: Viscoelasticity model for relaxation (Model) and compaction (Mode2)

On Fig. 2 we propose a structure for relaxation (Mode 1) and another for compaction (Mode
2). The various constants (E,E,E,,7,,7,,7",,7',) are directly linked to the material
characteristics and in particular to its fibrous structure, either mono-porosity (Random Mat) or
dual-porosity (Woven Material), according to Henzel [2] and Bréard [16]. According to
boundary conditions imposed to the material (Mode 1 or 2), its very structure is modified. So
is its viscous state. This can be explained by a local fibres rearrangement responsible for
lubrication phenomena at the solid/fluid interface. The discussion on that subject shall not be
extended any further in this paper. It is being developed at this time. The laws corresponding
to these two solicitation modes lead to the following relations:

o'+a,c'+a,6'=b,¢ Mode 1 (12)
o'+, 0'=d,é Mode 2 (13)

As a validation example we give the results of this model for the dual-porosity woven
material EBX936 studied in Robitaille [17].
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Fig. 3: Viscoelastic model validation for Modes 1 and 2
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CONCLUSION

In this work, we concentrated on the development of a poro-visco-elasticity model applied to
the fluid/porous medium interaction modelling. More precisely, our experiments (compaction,
relaxation) lead us, in a first step, to linear viscoelastic behaviour laws. These law can be
represented by well-known rheological models. The physical origins of these models validity
are not, however, unquestionably established but allowed to give a physical modelling of the
various behaviours we observed, the whole being linked to Biot’s theory which we use to
define our global model. Experimental studies show that, in first approximation, this model is
very satisfactory and will be useful for a wider study of the problems found in the LCM
processes. This approach consisted in a double-oriented towards experimental and theoretical
considerations. From an experimental point of view, we highlighted the most interesting
characteristics linked to macro/micro-pores interaction and contributions. From the theoretical
point of view now, we tried to understand the main physical effects responsible for our
experimental observations. Qur model is seen as a research tool more than an objective per se.
We go on this study, at the present time, developing a mathematical modelling of tri-
dimensional mechanisms in order to link them to dynamical aspects of flow in double-scaled
porous media.
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