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Abstract

Single curvature bending of fibre reinforced thermoplastic (FRTP) composites has been
demonstrated to be a useful method for determining the longitudinal shear behaviour of
these materials. This paper further examines the vee-bending method as a means of
analysing the transverse shear response of a glass fibre-reinforced polypropylene
material. Laminated strips, with layers possessing reinforcing fibres aligned either
parallel or perpendicular to the bend axis, are subjected to a novel bending operation
between two highly polished platens, designed in such a way as to ensure a constant rate
of shear deformation. Interpretation of the material's longitudinal and transverse
behaviour is made by way of an idealised fibre-reinforced material (IFRM) model subject
to the kinematic constraints of incompressibility and fibre inextensibility. The
experiments demonstrate the suitability of the method for comparing the transverse and
longitudinal shear behaviour of such materials.

Introduction

Fibre reinforced thermoplastic (FRTP) materials have enjoyed a steady rise in
popularity over recent times which can be largely attributed to the way in which they
lend themselves to rapid processing applications'. Their ability to be quickly formed
into fairly complex 3-dimensional components from sheet stock by the application of
heat and relatively low forces seems to have broadened their appeal to a widening
number of manufacturers. Of additional benefit is the abundance of processing methods
now available for FRTP materials, a large proportion of which have been derived from

existing sheet metal forming operations.

The rapid advances made in the field of manufacturing technology have perhaps

intensified the need to establish more reliable methods of characterising and



determining the thermo-rheological behaviour of such materials. There is now a well
established theory” describing the deformation of continuous FRTPs, the simplest of
which assumes the composite to possess inextensible fibres embedded within an
incompressible viscous medium. The theory leads to the recognition of two important
material parameters, namely the longitudinal shear, n,, and transverse shear, mg,
viscosities. These two parameters govern the stress in the composite body and hence

they must be determined by means of experiment.

To date, efforts in determining m; and n; have focused on variations of ply pull-out’
and oscillatory shear experiments®, both of which provide useful information regarding
the behaviour of such materials. More recently however, a novel way of isolating and
studying the longitudinal shear behaviour of continuous fibre reinforced thermoplastic
composites has been proposed by Martin et al.’> who obtained a solution for the three
point bending of an ideal viscous beam using an IFRM model. Unfortunately, the
solution failed to match the experimentally observed behaviour of the glass fibre/PP
laminates. Mander® subsequently imposed further constraints on the deformation using
a vee-bending jig which had two polished platens to “wrap” the laminate around the
roller minimising any indentation tendency commonly found in vee-bending tests. This
allowed the true longitudinal shear response of the material to be determined. This
paper further examines this novel vee-bending method by employing a cam profile to
keep the shear deformation rate constant and establishes its usefulness as a means of
establishing both the longitudinal and transverse shear behaviour of continuous FRTPs

such as PLYTRON?® (a glass fibre/PP composite, originally developed by ICI Ltd. UK).

Development of a Laminated Viscous Beam Model

Figure 1. Vee-bending of a laminated viscous beam.



Thermoplastic polymers are generally known to exhibit viscous behaviour at
temperatures within or above their molten temperature ranges. The matrix material in
reinforced thermoplastic composites can therefore be idealised as an incompressible
Newtonian fluid in its molten state. In addition, there is the added constraint that the
fibres impose on the composite body. In the case of continuous fibre reinforced
thermoplastics, the fibres may be thought of as homogeneously distributed inextensible
cords. In this part of the paper, we consider the plane strain bending of an initially flat
laminated beam as illustrated in Figure 1. The analysis is limited to the case in which
the fibres of the individual layers are restricted to lie either in the plane of deformation,
or orthogonal to it as shown in Figure 1. Further limitations of the theory will be
discussed later on. Some of the equations presented in the following analysis may be
found in Spencer’s® text but are repeated to maintain the comprehensiveness of the

theoretical approach.
Kinematic Constraint Conditions

Let us first consider the kinematic constraints placed upon a body due to the
assumptions of incompressibility and fibre inextensibility. In the following analysis
capital letters are used to indicate vector quantities referred to the reference state
while lower case letters are used to indicate vector quantities in the deformed state.

The incompressibility constraint condition may be written mathematically as
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where the quantities x; and X, refer to the components of the deformed and
undeformed coordinate vectors respectively; v denotes the velocity vector; and d is

the rate of deformation tensor given by

d; = l[ﬁ+%j )



A family of fibres in the undeformed configuration may be represented by a field of
unit tangent vectors A(Xgy). The directions of the fibres at any particle in the
continuum are then given by A. Therefore, the trajectories of A represent the fibres
themselves and the components of A are denoted by Agz. During deformation the
fibres are convected with the continuum and the same particles will lie on a given
fibre at any time. The fibre paths in the deformed state may then be represented by
the trajectories of a new unit vector field a(Xg,t). Using these definitions the fibre

inextensibility condition may be written as

aa—=aad. =0 3)

The only other constraint imposed on the deformation is that of plane strain. Pipkin and
Rogers’ have derived the theory for plane strain deformations of incompressible
materials where the reinforcement is restricted to lie in the plane of deformation (X, =
constant). The two main results arising from their analysis indicate that the fibres must
remain in parallel surfaces, and that the thickness of the sheet cannot change during any
plane strain deformation. It is obvious from these two conditions that the only form of
deformation available to such a material under the stipulated conditions is that of simple

shear along the direction of the fibres.

We now consider the transversely orientated layers which do not kinematically
influence the deformation in the plane, but only serve to enforce the plane strain
condition already assumed. We make the assumption that the thickness of these layers
remains constant during any plane strain deformation. In other words, it is assumed that
the transverse layers exhibit the same kinematic behaviour as the longitudinal layers. By
way of an example, consider the shear deformation of an initially flat laminated plate
consisting of three layers as shown in Figure 2. The outer two (longitudinal) layers
possess fibres which lie in the plane of deformation while the reinforcement in the
central (transverse) layer is aligned in the direction of the X; axis. The unit vector b

represents the shearing direction such that a.b = 1 in the longitudinal layers, and a.b =0



in the transverse layer. The unit vector n is defined to be orthogonal to both the
shearing direction and the X, axis. The left hand side of the plate is embedded along the
x, axis and rigid body rotations and translations have been ignored. The shear strain
through the entire plate is therefore constant and may be simply expressed by the angle

that the plate makes with the x, axis.

Y=0 “
The shear rate ¥ can then be simply expressed in terms of ¢ as
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This result is useful when establishing a constitutive relationship for a viscous fluid.

hSxs
A A*z n

(a) (b)

Figure 2. (a) Undeformed plate; (b) Deformed plate.

Stress in a Constrained Material

The total stress in a constrained material can be thought of as the sum of a reaction

stress, 1, and an extra stress S;;.
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where S; satisfies the constraints bbS;=0 and nn;S;=0

In other words, S; involves no normal stress component on surface elements normal to
the b or n directions. The reaction stress does no work in the deformation and the
reactions p and T arise as a result of the incompressibility and inextensibility conditions
respectively. T is the total tension on elements normal to the fibre direction and p
represents the total pressure on elements normal to the n direction. These scalar terms
must be determined by solving the equilibrium equations. The deviatoric stress tensor,
S; needs to be specified by an appropriate constitutive relationship. If the material
possesses reflectional symmetry in the X; plane and the deformation is homogeneous,

under plane strain conditions the only non-zero components of ¢; are
o, = —p(6ij -a;a;)+Taza, + S(ainj + ajni) + S33kikj @)

where k is the unit vector normal to the plane of deformation. A constitutive

relationship is required to define S;; and S.
Constitutive Equation

According to Rogers®, the constitutive relationship for a viscous fluid subject to the

stipulated constraints is given by
Sy =2n.d; + 2(n, —r)(a;a,dy; + aady) ®)

where -n, and m; are the respective longitudinal and transverse viscosities of the
continuum. In a plane strain deformation v, = dy; = 0. As the fibre directions differ in
the longitudinal and transverse layers, it is necessary to consider the stress in both layers
separately. The fibre direction in the longitudinal layers coincides with the shearing

direction and can be simply specified in component form by



a; = b =(cosd, sind, 0)
Using equations (8) and (7) it can then be shown that

S, = binjcij = binjsij = Zaninjdij =My = m(ﬁ ©)
where S, is the shear stress associated with the simple shear deformation along the
fibre, or longitudinal, direction. For the transverse layers the fibre direction coincides
with the X; direction and may therefore be specified in component form by a;=(00 1).
Similarly, using the same equations that lead to (9), it can be shown that the shear stress

in the transverse layers is given by

Sy = binjcij = binjsij = 211Tbinjdij =MNyY = md3 (10)
For a viscous fluid model the shear stress in either layer only depends on the shear rate
and the viscosity. For a laminated strip of material, such as the one described, both the
transverse and longitudinal viscosities of the material can be determined from the

constitutive equation in the following manner.
Stress Equilibrium

According to equations (9) and (10) the shear stress through a laminated strip varies
discontinuously at the boundary surfaces and interfacial surfaces between differently
orientated layers. Initially it would appear as though equilibrium between the adjacent
layers is therefore unachievable. However there exists the possibility that a sheet of
fibres can support a finite force and hence an infinite tension. In the present analysis it
is necessary to accommodate discontinuities in S at the outer surfaces of the strip (§ = 0,
& = h) and also at the interfacial surfaces. We may achieve this by using step and delta
functions that allow T to take infinite values in the fibres in the material adjacent to the
boundary surfaces, and in the fibres adjacent to, and on either side of, interfacial
surfaces. The effect of this is to introduce simple jump discontinuities. For further

clarification of this property the readers are referred to Rogers and Pipkin [9] where the



discontinuous stress condition is used to satisfy the shear traction boundary conditions
in plane strain bending problems. Spencer'® has also shown how the same property can
be used to admit shear stress discontinuities for the more general case in which the
individual layers of an elastic laminated beam can assume any orientation oblique to the

plane of deformation.

The equilibrium of the deformed plate, shown in Figure 3(a), may be expressed in
terms of the hydrostatic pressure and the resultant shear and tensile forces, denoted by
S* and T" respectively. As illustrated, these resultant forces act on the face normal to the
shearing direction and can be simply evaluated by integrating through the thickness of

deformed plate. The resultant shear force per unit width can therefore be expressed by
& &2 h

S* = [S.de+ | S.de + S,dE (11)
Y & )

where h is the total thickness of the plate. Substitution of equations (9) and (10) into the

above equation yields an expression for the resultant shear force per unit width.
"= ¢(hyny +hyny) (12)

where h; and h; represent the total thicknesses of the longitudinal and transverse layers

respectively. (ie. hy =h-&,+ &, and h; =§,-&)).
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Figure 3. (a) Resultant forces acting on a deformed plate, (b) Shear stress distribution

through the thickness of a laminated plate (assuming 1 > ny).



Kinematic Model for a Vee-bend

The following kinematic solution is proposed for the deformation of a flat laminated
plate subjected to the novel bending operation illustrated in Figure 4. Only half the
deformed strip is shown as symmetry exists in the (x,, x;) plane. A more detailed

explanation of the workings of the jig follow later.

Support Cam

Figure 4. Kinematic vee-bending model (Not to scale).

The half-strip, shown in Figure 4, may be divided into three sections: [ABEF]
represents the fan region beneath the radius bar, [CC’D] represents another fan region
at the free end and [BC’DE] represents the straight section between the two fan regions.
The support cam shown in Figure 4 has been designed in such a way that the rate of
angular rotation of the platens is proportional to the downward velocity of the radius

bar. The relationship between the two can be conveniently expressed as

il (13)



where £, is the orthogonal distance between centre of the radius bar and the point of

contact between the platen and the supporting cam. Both £, and cos$ vary with w, but
the ratio of the two remains constant and equal to L for all ¢. The kinematic model
leads to the result that the shear rate in sections [ABEF] and [CC’D] is zero.
Consequently these fan regions move down like rigid bodies and thus the shear stress
through these regions is zero. In region [BC’DE] the strip remains straight and the shear
rate, 7, is equal to the rate of angular rotation of the platen and strip, ¢, defined in

equation (13).

Q+S

Figure 5. Equilibrium of the vee-bending mechanism.

The net downward load on the radius bar can be calculated by considering the
equilibrium of the entire bending mechanism as shown in Figure 5. When the sample is
bent to an angle ¢, the moment and force equilibrium equations enable the forming load
per unit width, P, to be expressed in terms of the longitudinal and transverse shear

viscosities of the material.
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For the case in which the strip possesses no transverse layers (ie. h;=0), it becomes a
simple matter of rearranging equation (14) to yield an expression for the longitudinal
viscosity. Once m(¢) has been established, the subsequent introduction of transverse

layers into the laminated beam may then be used to determine n(¢).

Experimental Procedures

The vee-bending experiments were conducted using PLYTRON sheet (a PP/glass fibre
unidirectional pre-impregnated material with a nominal 35% fibre volume fraction)
consolidated from 8 plies of prepreg. During the course of this study two different lay-
up schemes were tested; [0°];, and [0°/90°/90°,0°]s. In both cases the longitudinal
direction was defined to coincide with the control axis (0°), while the transverse

direction was defined to coincide with the width as illustrated in Figure 6(a).

L = longitudinal &
T = transverse

Figure 6. (a) Test sample dimensions, (b) deformed sample.

Experimental Setup

The vee-bending experiments were performed in a benchtop oven which was
extensively modified so as to ensure isothermal testing conditions. The oven and
bending jig, secured within the oven, were mounted on the crosshead of an Instron 1185

testing machine, capable of the various constant crosshead speeds used in the



experiments. The experiments were also performed over a range of temperatures
between 180°C and 150°C. In each test the samples were subjected to a predetermined
crosshead displacement which corresponded to a deformed part angle of 90° as shown
in Figure 6(b). Forming loads were transferred from the punch to a 50N load cell,
positioned above the oven, via a slender stainless steel connecting tube. The analogue
load cell output was then amplified before being converted to a digital signal through an
A to D circuit board. Load data, sampled at a rate of 5Hz, was then read and recorded
on a PC using the LabView™ data acquisition facility. The load data was subsequently
analysed using the viscous bending model described in the previous section. Figure 7

shows a schematic representation of the experimental setup.
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Figure 7. Schematic representation of equipment setup.

The temperature of the oven and sample were controlied by means of a Gefran 1000
PID temperature controller with the feedback provided by one of the two K-type
thermocouples embedded at the ends of the sample. By using the self tuning feature of
the controller, it was found that the temperature of the sample and testing jig could be
controlled to within +0.5°C of the desired test temperature. In addition, three ancillary
thermocouples were attached to various points of the vee-bending jig to monitor the

temperature throughout the testing sequence.



As can be seen from Table 1 the tests were performed over a relatively wide range of
forming rates and temperatures. For each test the same heating sequence was used,
namely the samples were positioned on the platens of the jig with the thermocouples in
place and then heated to 185°C. A 5 minute period was then allowed to enable the
temperature of the apparatus and sample to stabilise. After this heating and stabilising
period the oven temperature was set to the desired test temperature. Upon cooling to the
set test temperature the sample was held for a period of time until the temperature

stabilised. The actual test then commenced.

Table 1. Outline of testing program.

Crosshead Speed| 150°C| 160°C| 170°C| 180°C
50 mm/min v
100 mm/min v v v v
200 mm/min v
500 mm/min v

The gross load measured during each test included the tare weight of the platens and the
additional attached equipment, as well as the net forming load. In order to establish the
actual net load required to form the strip a series of dummy trials were performed.
These dummy tests involved exactly the same procedure as detailed above except that
the strips were cut in half directly under the bending axis to eliminate any forming load
contribution. A series of these tests were performed at various temperatures and
crosshead rates. The tare loads measured from the dummy trials were then simply
subtracted from the measured gross forming loads obtained in the actual bending tests.
Not surprisingly, the temperature was found to have a negligible effect on the measured

tare loads.
Description of the Vee-bending Jig

In the bending jig used for this investigation two highly polished platens are mounted
on a pair of Teflon™ cams rather than the circular supports used by Mander®. This
ensures minimal frictional resistance in addition to a constant rate of angular rotation of
the platens. A schematic representation of the bending jig is shown in Figure 8. It

consists of two rectangular platens hinged together by a pair of swing arms which are



attached to the platens. The platen surfaces are machined flat and highly polished while
the swing arms are connected together by means of a hinge pin which enables the
platens to “fold” with an action similar to that of a door hinge. The folding action, or
rotation, of each platen is manipulated by the pair of cams which have been NC
machined in such a way as to ensure that the rate of angular rotation of both platens is
constant throughout the deformation. In addition, the platens have parallel grooves
machined on their underside to act as guide rails for the cams. To ensure the correct
alignment of the platens during the deformation, the hinge pin is constrained to vertical

movement by means of the guide slot machined in the side plates.

connecting tube

radius bar

o) O O] BN

base plate

Figure 8. Schematic description of vee-bending Jig showing undeformed and deformed

configurations (note that the front side plate is omitted for clarity).

The forming load is transferred from the radius bar through a slender stainless steel tube
to a 50N load cell positioned directly above the oven. The radius bar is attached to the
connecting tube via a detachable seat arrangement which ensures the correct alignment
of the bar and tube. As the seat and radius bar are moved in a relative downward motion
(by the moving Instron crosshead) the molten sample is progressively wrapped around
the radius bar. The radius bar is prevented from indenting the molten sample as the
relative gap between the platens and radius bar is fixed by the length of the radius

swing arms. To enforce the plane strain condition, the radius bar has an end plate which



prohibits the molten sample from flowing transversely. A strip of Mylar™ film is
placed between the sample and the platens to prevent the molten strip adhering to the

polished surface during the test.

Results and Discussion

Before presenting the results pertaining to the materials shear behaviour, it would seem
appropriate to initially examine the general form of the load curves obtained in the
trials. A notable feature of the experiments was the very small forming loads measured.
Depending on the temperature and the rate of deformation, the actual loads required to
form the molten strips to 90 degrees, were found to vary between 1~6N. As anticipated,
the forming load required for any given lay-up sequence, under a constant rate of
deformation, was found to increase with decreasing temperature. Additionally, the
forming loads measured under isothermal conditions, were generally observed to
increase as the forming rate was increased. Several load curves are presented in Figure
9 which illustrates how the forming load was observed to vary with lay-up sequence.
Both the shape and the magnitude of the load curves, for the unidirectional ([0°]5)
strips, were found to be in general agreement with those reported by similar studies™®.
The same type of relaxation behaviour observed in their respective studies was also

clearly evident in these experiments.
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Figure 9. Net forming loads plotted as a function of time for various lay-ups; forming

rate 100mm/min, temperature = 180°C.



In general the net forming load curves for all the samples tested could be divided into
three regions as shown in Figure 9. Region I indicates the initial loading part, and the
second definable zone (Region II) is characterised by a gradually increasing load up to
the point at which the crosshead is stopped. Region III begins as the test is completed
and is characterised by an instantaneous drop in load followed by an asymptotic decay
with time. Tt should be noted that the material exhibits visco-elastic behaviour which is
not entirely compatible with the viscous bending model used in this study, but useful

viscosity results can be determined from the loading as will be shown later.

The attention will now be focused on the more important task of interpreting the
material’s longitudinal and transverse shear behaviour from these forming load curves.
For a laminated strip possessing both longitudinal and transverse layers, initially it is
necessary to establish 1, as a function of ¢. In order to achieve this, an initial set of vee-
bending experiments were performed on strips possessing no transverse layers (ie. [0°];
samplés), thus eliminating m; from equation (14). The results of these tests are
presented in Figure 10 for the case in which the temperature is maintained at 180°C for
various rates of deformation. Similar results were established for the case in which the

forming rate was kept constant and the temperature varied between 180°C and 150°C.
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Figure 10. Graph illustrating the apparent longitudinal viscosity of PLYTRON at

various rates of deformation; temperature = 180°C.



At 180°C a noticeable shear thinning effect is evident as the apparent longitudinal
viscosity is observed to decrease with increasing rates of deformation. This shear
thinning trend, depicted in Figure 10, is in qualitative agreement with that observed by

other researchers*>.

Having established m; as a function of ¢, over a variety of forming rates and
temperatures, allows the analysis of the transverse shear behaviour to be undertaken.
The method employed to do this was identical to that used for establishing n; ; however,
it required that transversely orientated layers be introduced to the laminated strip. As
expected, the forming loads obtained in this series of tests were found to be consistently
lower than those measured for the uni-directional laminates at the same forming rate
and temperature. Figure 11 shows the apparent transverse viscosity of PLYTRON as a
function of platen angle for various forming rates. The initial part of the curves may be
ignored due to the transitional behaviour previously mentioned. A similar shear
thinning trend to that observed in the longitudinal behaviour is also evident in the
transverse shear response. This non-linear behaviour is supported by Groves et al.* who
applied oscillatory shear techniques to determine both the longitudinal and transverse

shear behaviour of a similar material.
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Figure 11. Graph illustrating the apparent transverse viscosity of PLYTON for various

rates of deformation; temperature = 180°C.



Figure 12 shows how the apparent transverse viscosity of PLYTRON was found to vary
with forming temperature. The variability in 1, with forming angle at 160°C and 150°C
reflects the degree of elasticity retained within the material at lower forming
temperatures. The same trend was also evident in the longitudinal shear response at
lower forming temperatures, thus demonstrating that a viscous model is perhaps only

applicable at temperatures well inside or above the molten range of the polymer matrix.

The results obtained to this point allow a direct comparison to be made between the
transverse and longitudinal shear viscosities. This provides an important opportunity
to verify a number of theoretical models which have been proposed in an attempt to
relate m; and 1, to the fibre volume fraction f and the matrix viscosity My A
summary of the models that have been proposed by Pipes', Christensen'”, and
Binding'® is given in Table 2. These models are based around geometric arguments
and assume somewhat of an idealised behaviour. The models of Pipes and
Christensen predict that n; > m, for all fibre volume fractions, while the model of
Binding predicts only 1, as a function of f and m,. Furthermore, the longitudinal
viscosity, as predicted by Binding, is larger than either of the transverse viscosity

terms predicted by Pipes and Christensen.
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Figure 12. Graph illustrating the apparent transverse viscosity of PLYTON for various

forming temperatures; forming rate = 100mm/min.



Table 2. Theoretical models relating n and n, to the fibre volume fraction fand ny,.

N/ My N /My
1 27
Pipes'’ 1- \/7 ;(1'—};
(1-0193f) 1+0873f
Christensen' (1- 05952 £)*(1- f)*"? (1-08815/)"2(1- f)
1-f
Binding'"® - sl 7

F=237/n ©0<r=m/@2V3)

It is to be noted that the viscosity results obtained for PLYTRON indicate that n, <
1, for all the temperatures and forming speeds investigated, which is clearly not in
agreement with the models of Pipes and Christensen. However, it is interesting to
note that by combining the model of Binding with those of Pipes and Christensen to
eliminate the matrix viscosity, expressions for the viscosity ratio my/m, may be

obtained which are in line with the experimentally observed results:

N1 1_\/?

—= Pipes/Binding
T 1- f

T (1—0.193})3(1:]?)2
. (1-059521)"(1- /)**(1- f)

Christensen/Binding

Assuming that PLYTRON has a hexagonally packed arrangement of fibres and a
nominal fibre volume fraction of 35%, the above expressions would suggest that the
ratio ny/m, is approximately 0.58 using the combined Pipes/Binding theory, and 0.54
using the alternative Christensen/Binding theory. These values slightly underestimate
the experimentally obtained results which are shown in Figure 13. The results
indicate that at 180°C, the ratio of the two viscosity terms remains within a narrow

band for the various deformation rates studied in this investigation. This is in




agreement with the idealised theory presented above, in which no rate dependent
terms arise. The results would also tend to suggest that the shear thinning behaviour
observed in both the longitudinal and transverse directions, is largely attributable to
the non-linear behaviour of the molten matrix material. It should be noted that the
idealised models presented in Table 2 fail to adequately take account of the resin rich
layers that form between the individual plies. It is the authors’ belief that the presence
of these thin layers, coupled with a slight amount of fibre misalignment, which

accounts for the discrepancy between the theoretical and actual results.
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Figure 13. Transverse to longitudinal viscosity ratios for various forming rates;

temperature = 180°C.

Finally, it is important to revisit the viscous bending model and address some of the
assumptions involved in its development. The bending model presented earlier
assumed the transversely orientated layers to behave kinematically, in an identical
manner to that of the adjacent longitudinal layers. The validity of this assumption can
be assessed by considering the thickness of the transverse layers, which should,
according to the model, remain constant through the entire deformation. In order to
gauge the thickness variation in these layers a number of deformed samples were cut,

polished, and examined using an optical microscope. As shown in Figure 14, the



thickness variation in the transverse layers, recognisable by their specular appearance,
was found to be negligible in the [0°/90°/90°/0°]s samples. However, a number of
tests performed on [0°/90°/90°/90°]; samples revealed a significant transverse
thickness variation of up to 15% through the length of the samples. The application of
the model should therefore be restricted to the bending of laminates which at least
possess transverse layers of total thickness comparable to that of the adjacent
longitudinal layers. The extent to which the thickness of the transverse layers may be

increased, without violating the assumption, remains to be established.

Figure 14. The cross section of a deformed sample [0°/90°/90°/0°];.

Conclusions

Both fhe longitudinal and transverse shear behaviours of PLYTRON have been
investigated using a novel vee-bending device. The unique design of the bending
mechanism is such that it ensures a constant, definable rate of shear deformation
through the thickness of a laminated strip, thus allowing both the longitudinal and

transverse shear response of the material to be studied.



A laminated viscous bending model has been developed which provides the framework
for interpreting the longitudinal and transverse shear behaviour of continuous fibre
reinforced thermoplastic materials. The model itself yields an analytical expression
relating the load required to bend a laminated strip to the forming geometry, rate of

deformation, and the material properties, n; and 1.

This study has identified vee-bending as a simple and useful way of determining the
longitudinal and the transverse shear behaviour of continuous fibre reinforced
thermoplastics. The results of the bending tests indicate that the longitudinal viscosity
of PLYTRON is greater in magnitude than the transverse viscosity over the entire range
of forming rates and temperatures investigated in this study. Both 1, and n; were found
to exhibit shear thinning behaviour at 180°C, as both terms were observed to decrease

in magnitude as the effective shear rate was increased.

The transverse viscosity of PLYTRON was found to vary with both forming rate and
temperature. At 180°C, m; was observed to decrease as the effective shear rate was
increased. For the forming rates used in the study, this resulted in a variation of
between 30,000 and 4,000 Pas. As the forming temperature was lowered a similar
increase in 1, was observed. At 150°C a large amount of variation in n; with forming
angle was noticeable thus reflecting the materials increasing elasticity at lower forming

temperatures.

The viscosity results obtained from the bending tests have been compared to a number
of existing theoretical models which relate n; and n; to the fibre volume fraction and
the matrix viscosity. The results obtained by using the vee-bend test and viscous theory
appear to disagree with the individual models of Pipes and Christensen by predicting n;
< m, for all the forming speeds and temperatures investigated. However good
correlation is found to exist between the determined viscosity ratios (n;/n.) and those
achieved by combining the models of Binding and Pipes or Christensen. As predicted
by the combined models, the ratios determined by the present method also appear to

remain within a narrow band over a relatively wide range of deformation rates.
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