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Abstract

Two classes of simple constitutive equations for continuous fibre-
reinforced composites are introduced. In the first, the transverse and
longitudinal viscosities are functions of invariants of the rate-of-strain
tensor and the fibre-orientation vector. In the second, anisotropic
yield conditions are imposed. The response of each of the models in a
stratified flow is considered.

1 Introduction

To model the flow of materials it is necessary to derive appropriate consti-
tutive descriptions for the materials concerned. In the case of anisotropic
materials there are a number of stress-strain and stress-rate-of-strain rela-
tionships which enable a range of materials possessing directional proper-
ties to be modelled. In this present study the materials of primary concern
are continuous fibre-reinforced composites (CFRCs) which are transversely
isotropic. An account of the theory of transversely isotropic materials is
given in Hull et al. [1] where a number of models are described. In partic-
ular they derive the anisotropic counterpart of the isotropic Reiner—Rivlin
fluid for ideal fibre-reinforced fluids that are both inextensible in the fibre
direction and incompressible. A special case of this is the linear form with
constant viscosities

0i; = —pbi; + Taza; + 2nrdi; + 2 (ML — ) (a;andi; + ajaedix) - (1)
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where o3, d;;, di; and a; are the Cartesian components of the stress tensor,
identity tensor, rate-of-strain tensor and the fibre-orientation vector respec-
tively. The constant longitudinal and transverse viscosities are 7 and nr
respectively, the isotropic pressure is denoted p and the tension T is a ten-
sion is a reaction force arising from the inextensibility constraint
ov;
aiaj— =0, (2)
8xj
where v; are the components of the velocity vector. This constraint is implied
in the convected equations
da; da; 0v;

— = g;—. 3
5 ' Ydz, Yoz, 3)
Some experimental studies on CFRCs have found these materials to possess

a variable viscosity and/or a yield stress. It is therefore of interest to consider
anisotropic models that mimic these qualities.

2 Anisotropic models with variable viscosity
functions

A model that is commonly used to describe isotropic materials with a variable
viscosity is the generalized Newtonian model

Oij = —pdi; +2n (II%) di;, (4)

in which the viscosity 7 is a function of IT = 2d;;d;;, the second rate-of-strain

-invariant. As an anisotropic counterpart to the generalized Newtonian model
we generalize eq. (1) by assuming that 7, and 7y are functions of the two
independent invariants

Ilz = 2dijdija .[22 = 4a,—d,-jdjkak. (5)

Two functional forms for n;, and nr are considered based on the isotropic
Cross model [2] which has proved effective in characterizing isotropic materi-
als with shear-rate dependent viscosities. In the first it is assumed that both
nr and nr depend on the invariant I; only, so that

s = N> + "3‘"5°1_,,, s=L,T. (6)
1+(Cs|L]) ™™



In the second, in order to reflect directional differences in the viscous response

0 o5} 0 00
-7 Ny — 1
i L ) r = 77'%0 s L JT I-nr? ( )
1+ (Cp|1}) 1+ (Crl|Jl)

where J2 = I2 — J2. In the above expressions for nz and 7r the model
parameters are defined as follows: n, are power-law exponents, 7 and n?
refer to asymptotic values of the viscosity at very high and very low shear
rates respectively and C, are constant parameters with the dimension of
time. In all the viscosity models if ns = 1 the viscosity becomes constant
and eq. (1) is recovered. Additionally, if n, > 1 the viscosity increases with
value of the invariant and conversely if n, < 1 it decreases.

=15 +

3 An anisotropic yield stress model

In this section, characteristics of an isotropic yield stress model are com-
bined with the anisotropic model given in eq. (1) to produce an anisotropic
vield stress model. A frequently used isotropic yield stress model is that
due to Bingham [3] and in 1947 Oldroyd [4] provided a properly invariant
formulation of the Bingham fluid which can be written

ok = 3KA, )
0ij = —pdi; + i, =
021- = 2u€ij7 (%0':]0':1 < U;) ’ (10)

P 2dpdi) %) dij, (30405 > 0 i
o) = (771 + 0y (2dkidri) ) ifs (Eaij"ij = UU) : )

The quantity A is the dilation of the material and o;; and ¢;; are components
of the extra stress and strain tensors. The rigidity and bulk moduli are given
by u and & respectively, while n, and o, denote the reciprocal mobility and
the value at which the material yields. All other quantities are as previously
defined.

A natural extension of the model given by egs. (8-11) to an anisotropic model
is

O = 3f€A, (12)
Oy = - 5,']' + Taiaj + Gll-j, (13)
oy = 2pey, (3ol0%; < 1) » (14)

oi;, = 2nrdij + 2 (e — nr) (Garde; + ajadix) + fij,
(304,04 > $fisfis) » (15)



where f;; are components of the yield stress tensor given by
1
=ty (207d;; + 2 (oL — or) (aiarde; + ajakd,k)) (16)
(2dkidri)?

in which or and o, are the yield stresses transverse and perpendicular to
the fibre directions respectively. The model predicts that below the yield
value the material behaves like an isotopic elastic solid and upon yielding
the directional properties of the material are important and it behaves as an
anisotropic liquid. The yield condition itself is anisotropic having different
values depending upon the direction of the fibres.

For isotropic yield stress models it is commonly assumed that the material
is inelastic prior to yielding [5]. If this is the case then y — co and eq. (14)

is replaced by
di.‘i =0, (2 O35 z] = 2f1]f1.1) (17)

It has been pointed out [6], that using eq. (17) can cause problems with
numerical schemes since numerical noise will always produce non-zero values
for d;;. In addition, it is not possible to determine the stresses in the unyielded
region. One solution to these problems is to assume that the material behaves
like an extremely viscous Newtonian fluid below the yield stress, that is

oi; = 2nydij, ( 0404 < ;,f,,f,_,) (18)

where the Newtonian viscosity 7, >> 7, and nr. Using eq. (18) means that the
material flows (albeit very slightly) isotropically below the yield condition.
This ploy has the disadvantage that there will be a discontinuity of stress
on yielding. It is also possible to build in anisotropic deformation in the
- ‘unyielded’ region but due to the fact that the deformation is negligible at
stresses below the yield vaule this appears to be an unnecessary complication.

4 Steady flow

The response of the models proposed in this paper in steady flow is now
examined.

Recently, Goshawk and Jones [7] considered the flow of continuous fibre-
reinforced composites in a steady flow. The model laminate was comprised
of distinct resin layers and plies stacked alternately. In the current work
a similar arrangement is used; however the resin layers and plies need not
alternate in the stack thus two or more plies (or resin layers) may be placed
adjacent to each other. This new arrangement further generalizes the model
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Figure 1: Geometrical set-up and orientation

of the laminate. The analysis follows closely the aforementioned work of
Goshawk and Jones [7] for the shear flow of anisotropic materials with con-
stant viscosity functions.

The problem is referred to a Cartesian frame of reference O(xy, T2, Z3), ar-

ranged as shown in Fig. 1. The layered composite laminate is sandwiched

between two rigid plate, one of which is fixed while a given force F or velocity

V is applied to the other. It is assumed that the flow is sufficiently slow for

inertial terms in the equations of motion to be neglected. Additionally, any

body forces are assumed to be far lower than viscous forces and the equations
of motion reduce to 5

Oij

5—3; = 0. (19)

The material is incompressible so the equation of continuity is d;; = 0. Fol-
lowing Goshawk and Jones [7], the velocity distribution is assumed to be

W7 = Az, + BMzy + COzs + D", (20)
'Ugr) - E(r)xl - j4('l')x2 + F(').’L‘g + G("), (21)
o =0} (22)

which gives shear, extensional and translational components to the flow and
satisfies the continuity equation exactly. The fibre direction in each layer is
taken to be

a= (cos o sina, 0) . (23)

The boundary conditions are applied at the interfaces of the laminate and the
rigid plates at which it is assumed there is no slip. Additionally, the applied
force on the pull-out plate is equal to the resultant shear traction imposed
by the resin on that plate. This condition is not required to determine the
velocity distribution through the laminate if the velocity of the pull-out plate



is given. Under this circumstance the condition can be used to find the force
applied to the plate. At an interface between any two layers in the stack it
is assumed that all velocities and shear stresses are continuous.

Application of the fibre inextensibility condition and some of the boundary
and interface conditions reveals that AT = 0 and BM = —EM =0, for all
r, see Ref. [7], and the velocity field given in egs. (20-22) reduces to pure
shear flow

oA = CMgy4+ DO, (24)
o) = FOgy+ G, (25)
) = 0. (26)

The velocity field has been reduced to egs. (24-26) using arguments related to
the kinematics of the flow and the inextensibility of the fibres and to proceed
further the stress distributions in the resin layers and plies are required.

4.1 Stress distributions

4.1.1 Resin layers

The constitutive equations to be used for the plies have been outlined in
sections 2 and 3, however no attention has been paid to the constitutive
description of the resin layers. It is quite plausible for the resin layers to
follow the isotopic equivalent stress-rate-of-strain relation to the anisotropic
relation used for the plies. However, for the sake of simplicity it is assumed
that all resin layers are Newtonian in nature and as such the constitutive
equation is the familiar

Oij = —p6ij + T]dij. (27)

Consequently, it is straightforward to show that if the rth layer is a resin
layer then the stress distribution is that layer, generated by the velocity field
in egs. (24-26), is

o) = off) = off) = —p,
Ug) =0,
Ugg) = W(’)C(T), O3 = U(T)F(')~ (28)



4.1.2 Plies — variable viscosity model

If it is assumed that the r** layer in the laminate is a ply that follows a
stress—rate-of-strain relationship given in eq. (1) with 7y and nr given by
either eq. (6) or eq. (7), then on applying the velocity field given in egs. (24-
26) in conjunction with the fibre-orientation vector the following stress field
is produced in the ply.

oD = ) 4 TO) gog? o),
oD = ™ 4 TOgin? o),
oy = —p,
of) = TC)cos? o sin? o™,
g13 = C(T)UT

+ (L — nr) (C(') cos? ) + F) cos o sin a(’)) !
093 = Fypp
+ (nr — nr) (F () sin% o) + C™) cos al” sin a(r)) ,
(29)

where 7;, and 7 depend upon the invariants I, I, and J through egs. (6)
and (7) and

L = (094 F07)}, (30)
I, = CWcosa+ FMsina, (31)
J = COsine— FMcosa. (32)

4.1.3 Plies — yield stress model

On applying the shear flow velocity distribution, egs. (24-26), together with
the fibre-orientation vector, eq. (23), to a ply which is the rt* layer in the
stack, and follows a constitutive relation given by egs. (12-15), produces the
following stress distribution;

ol = —p + TM cos? ™,
o) = —p 4+ T sin? o,
Ugg) = —'p(r),

o) = T® cos? ol sin? a7,



[ 7{nCt), (%Uz'-jaij < %fijfij)
o Do 4+ (n(L’) — i )) (C(T) cos? o™ + F) cosa sin a(r))
o3 = { + (U(T')C’(') + (ag) - a¥)) (C(’) cos? (")
1
+ F®) cos ol sin a(’)) ) /(C'('")2 + F(’)z) :
. (%Ugjo'z"j 2 %fijfij)
b G B, (3008 < s fiifii)
e IFE 4+ ( i — % )) (F ) sin? o™ + C™) cos o sin a(’))
o2 = \ + (ag)F ") + (a(L') - ag)) (F ) sin® (")
1
+ C™) cos ol sin a(’)) ) /(C(’)2 + F(’)z) ?
\ (';‘Ugjazj 2 %fijfij>
(33)
where
(r)? of” - o ™ cos o™ + FO gin ofm)’
%fijfij =o' + m (C cosa'’ + F\"sin o ) . (34)

4.2 Preliminary results

It should be noted that the stress distributions given in egs. (28), (29) and
(33) do not depend on the coordinate axes z1, s, Z3 and thereby satisfy the
equations of motion, given in (19), identically. The values of C™ and F™ in
each of the layers in the stack can be found by using the remaining boundary
and interface conditions. Due to the non-linear nature of the equations for
the plies, it is not possible to write down analytic expressions for C (") and F(
similar to those obtained by Goshawk and Jones [7]. Solutions are obtainable
using numerical techniques and some preliminary results are presented here.

The initial geometrical configuration considered for the variable viscosity
model is shown in Fig. 2. In this simplified example the laminate consists of
two resin layers, each adjacent to one of the rigid plates, and one ply sand-
wiched between the resin layers. In all, eight cases have been examined; four
combinations of the values of n, and ny have been used in both formulations
of n; and nr given in egs. (6) and (7). The values of the parameters used are
given in Appendix A.

A velocity of 5 mm/s is applied to the lower rigid plate in the z;-direction.
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Figure 2: Geometrical configuration for the variable viscosity model example

Since a velocity is applied, instead of a force, the velocity fields generated for
all of the cases considered are very similar. Typical examples of the velocity
fields in the z; and z,-directions are shown in Figs. 3 and 4 respectively. In
Fig. 3 as the fibres are rotated from 0 to 90° it becomes harder to shear the
ply due to the fact that for the parameters chosen 7 is always less than
nr. The velocity in the z;-direction, shown in Fig. 4, is zero if the fibres
are at 0 or 90° to the z,-direction. For any other fibre angles a velocity
field is generated in which there in flow in both the positive and negative
zo-directions within the ply. Such a velocity field has been shown to be a
characteristic feature of the flow anisotropic materials in steady shear [7].

Fig. 5 shows the shear stress in the pull-out direction, 013 as a function of
fibre angle in each of the four cases, for both formulations of 7, and 7r. It
is evident that the stresses are practically the same which implies that on
measuring o3, generated in an experiment, insufficient information would
be gained to determine which of the models to employ in a simulation. The
shear stress perpendicular to the pull-out direction, o33, though, shown in
Fig. 6, is symmetric about 45° for the viscosity functions involving I; and not
symmetric about 45° for the viscosity functions involving /> and J. Hence,
if g3 is found to differ in two tests carried out at fibre orientations of « and
90 — o then viscosity functions involving I, and J should be employed in any
simulation.

The viscosity functions, n; and nr, behave very differently for the two formu-
lations as the fibre angle is varied. In Figs. 7 and 8 the viscosity functions are
plotted for case 1 and the contrasting behaviour is clear. Similar behaviour
is observed in the other three cases.

For the anisotropic yield stress material, the flow in a laminate consisting
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Figure 3: Variable viscosity model: typical velocity distribution in the z;-
direction

1.0
Fibre angle
— 0"
EO.G | R -}
g | N\l e 30°
@ === 45%
® - 60°
% .6 o
= —— 00"
)
§ 0.4
.g f
=
0.2
“
Y
0.0 ]
-0.2 0.3

X, velocity (mm/s)

Figure 4: Variable viscosity model: typical velocity distribution in the z-
direction
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Figure 5: Shear stress 0,3 as a function of fibre angle. Large (small) symbols
represent viscosity functions involving Iy (I, and J)
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Figure 6: Shear stress g,3 as a function of fibre angle. Large (small) symbols
represent viscosity functions involving I; (I and J)
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Figure 7: Variation of the longitudinal viscosity function for Case 1. Large
(small) symbols represent viscosity functions involving I (I and J)
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Figure 8: Variation of the transverse viscosity function for Case 1. Large
(small) symbols represent viscosity functions involving I; (I, and J)
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Figure 9: Geometrical configuration for the yield stress model example

Pull-out plate

of two plies is considered, as shown in Fig. 9. The parameters used in the
model of the plies are given in Appendix A. A range of forces were applied
to the lower rigid plate, to displace it in the z;-direction. If the flow in the
x1-direction is ccnsidered, below a certain value no significant flow occurs
since the stress applied to the material is below the yield stress in both plies.
As the force is increased the upper layer yield as shown in Fig. 10. Since,
for the parameters chosen, the yield value is greater in the lower layer the
fluid in that layer behaves as a solid and displays the characteristic plug
flow associated with yield stress materials. As the force on the lower plate is
further increased the lower layer yields, as shown in Fig. 11. Further increases
in the stress lead to the velocity profiles in Fig. 12 which show that for this
example, upon yielding, the lower layer flows more readily than the upper
layer. In the z,-direction, no flow occurs until the higher yield value of the
two plies is exceeded. Upon the lower layer yielding the velocity profiles in
Fig. 13 are generated.

The response of the model as the fibre angle is changed is shown in Figs. 14~
16. The fibres in the two plies are at the same angle in Figs. 14 and 15 which
show velocity profiles when just the top ply has yielded and when both plies
have yielded respectively. In Fig. 16 the fibres in the two plies are at different
angles, in general, and both plies have yielded.
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Figure 10: Yield stress model: velocity distribution in the z;-direction, lower
layer unyielded
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Figure 11: Yield stress model: velocity distribution in the x,-direction as the
lower layer yields
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Figure 12: Yield stress model: development of the velocity distribution in
the z;-direction after the lower layer has yielded

1.4
1.2
1.0
0.8
E
L
0.6
Force (N)
0.4 — 80
-
—mnee 120
0.2 —-=- 140
0.0 T : T 1 T T ]

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
X, velocity (mm/s)

Figure 13: Yield stress model: velocity distribution in the x,-direction
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Figure 14: Yield stress model: effect of fibre orientation on velocity in the
z1-direction, fibre angles the same in both plies, lower ply unyielded
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Figure 15: Yield stress model: effect of fibre orientation on velocity in the
z,-direction, fibre angles the same in both plies, both plies yielded
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Figure 16: Yield stress model: effect of fibre orientation on velocity in the
z1-direction, fibre angles differ in the two plies, both plies yielded

5 Conclusions

Two anisotropic constitutive relations, particularly suited to the study of
continuous fibre-reinforced composites, have been presented. In the first the
longitudinal and transverse viscosities are assumed to depend on tensor in-
variant quantities related to the rate-of-strain tensor and the fibre-orientation
vector. In the second an anisotropic yield condition is imposed and upon
yielding the material behaves anisotropically. The response of these models
in a steady flow, which ultimately reduces to a steady pure shear flow, has
been investigated.

For isotropic materials, yield stress models and generalized Newtonian models
have been combined in the Herschel-Bulkley model [8] in which the stress and
rate-of-strain have a power-law dependence beyond the yield point. A natural
extension of the present work would be to combine the two new models to
produce an anisotropic equivalent of the Herschel-Bulkley model.
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Appendix A

Parameter values used in the models
Variable viscosity model

Lower resin layer
Thickness 0.05 mm; Viscosity 70 Pas

Upper resin layer
Thickness 0.05 mm; Viscosity 110 Pas
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Ply
Thickness 1 mm; n$° =10 Pas; n} =100 Pas; n¢° =100 Pas; n% =800 Pas

Case nr CL nr CT
1.311024|1.2 (04
1.311024 (06| 1.6
0410031204
0.4]0.0306]|1.6

O I A

Yield stress model

Ply [ n [ | nr |oL|or| R
Pas | Pas | Pas | Pa | Pa | mm
Lower | 101Y | 5 50 | 50 | 60 | 1
Upper | 10| 50 | 500 | 10 | 15 | 0.5

Note, h refers to the thickness of a ply.
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