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Abstract

We present a method to determine the thermo-mechanical properties of compression
molded composite parts. The flow-induced fiber crientation is first calculated by numeri-
cal simulation, and the resulting orientation state is used as input in a micromechanical
model that predicts the thermo-mechanical properties of the part. A two step homoge-
nization scheme based on the grain model approach is followed. First, the properties of a
reference composite with aligned fibers are estimated by means of a mixture rule between
the upper and lower Hashin-Shtrikman bounds (derived by Willis). This method is in
agreement with the Mori-Tanaka estimates for moderate concentrations, and gives better
results for higher concentrations. Next, the properties of the composite are obtained by
averaging several reference composites with different fiber directions. An example of a
3-D compression molded composite part is analyzed and the results are discussed.

1 INTRODUCTION

Fiber reinforced polymers are extensively used in mass production, in view of their short shaping
time in processes like injection or compression molding, together with the good mechanical
properties of the product. However, a non-homogenous fiber orientation field is often obtained,
which is sometimes highly anisotropic and difficult to predict for complex geometries. Thermo-
mechanical properties strongly depend on fiber orientation, but also on the presence of fillers
or on the part porosity. The lack of numerical tools to predict these properties can cause
over-dimensioning of the parts, which results in an unwanted weight and cost increase.

The purpose of this paper is to model the whole compression molding process, from the flow
calculation to the properties prediction. We first briefly present our flow and fiber orientation
model. The multi-level homogenization scheme used to predict thermo-mechanical properties is
then explained. Various types of inclusions can be taken into account in this scheme, including
long or short fibers, fillers or voids. Finally the example of a SMC compression molded container
is analyzed, including mechanical loading simulation.



2 FLOW SIMULATION AND FIBER ORIENTATION PREDICTION

As our aim is to calculate the evolution of fiber orientation during the compression molding of
thin parts, the flow field can be obtained using the lubrication approximation [1,10,12], which
means that pressure variations accross the thickness are neglected, while the pressure field P
satisfies the following form of the mass equation :

V.- (SVP)+h=0, (1)

where S is the fluidity, which depends on the pressure gradient, the thickness of the cavity
and the rheology of the suspension, and h is the time derivative of the gap width (which
differentiates the equation from the one governing injection molding). In complex parts, A
depends on the mold closing speed, but also on the local mid-surface orientation. Velocities
can be deduced from the pressure field and are used as input for fiber orientation calculations.
Although large concentrations of fibers are involved in most practical applications, the influence
of fiber orientation on the flow kinematics is neglected in our model. Fibers are assumed to be
long as compared to the gap width, and to remain parallel to the mid-surface, leading to a 2D
orientation field. According to Advani and Tucker [2], orientation can be represented using a
probability distribution function ¥(z,t, p), which is a function of the location z and the time
t, while p stands for the unit vector aligned with the fiber. Since calculating ¢ means solving
a four-dimensional problem in the 2D case, it is essential to simplify the model by introducing
orientation tensors, which are defined as the successive moments (az, aq, ...) of the distribution
function ¢. In particular, according to such hypotheses, the second order evolution equation is
written as
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where D is the rate of strain tensor, while @, stands for a mixed convected time derivative of
ag, A is a function of the fiber aspect ratio, C; is a coeflicient governing fiber-fiber interaction,
4 1s the strain rate, and finally I, stands for the second order unit tensor.

A drawback of this method is that the evolution equation for a, involves the fourth-order tensor
a4, which means that a closure approximation (expressing a4 as a function of ay) is required
in order to relate the evolution of ay to the velocity field. We have used the natural closure
approximation of Verleye and Dupret [3,13], which has been shown to be more accurate than
the usual quadratic or hybrid closures, especially during the flow transients.

3 THERMO-MECHANICAL PROPERTIES

Our goal is to predict the homogenized thermo-mechanical properties everywhere in a composite
part using the fiber orientation state obtained after mold filling. The composite is assumed to
consist of a continuous phase (the matrix) in concentration v,,, and of fibers in concentration v;.
Letting o, ¢, ¢ and 7 denote the stress, strain, heat flux and thermal gradient, and assuming an
1sotropic matrix and transverse isotropic spheroidal inclusions of aspect ratio Ar, constitutive
equations are written as follows:

- in the matrix: =0, : £ —BL AT NG T (3)
- in the inclusions: c=C;:e—-0GANT , o=k -v; (4)



where Cy,, or i, Bm or is km or ; are the stiffness tensor, the thermal stress tensor and the thermal
conductivity tensor of the matrix or the inclusions, respectively. The orientation state of the
inclusions is described by the second order orientation tensor a,.

The homogenization volume is supposed to be large enough to contain a statistically repre-
sentative amount of fibers, but small enough to let the orientation tensor be considered as
uniform.

3.1 Homogenization of a two-phase composite with aligned inclusions

The homogenized thermo-mecanical properties of a two-phase composite depend on the prop-
erties of the inclusions and the matrix, and the distribution of strain and thermal gradient
between them only. This distribution can be described by introducing a fourth order deforma-
tion concentration tensor B¢ and a second order thermal gradient concentration tensor B”:
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where () .. denote the average in the matrix or the inclusions, respectively, in the homog-

enization volume. Using these tensors, the homogenized thermo-mechanical properties can be
expressed as

C = (vC;i: B 4 v,0n): (v; B + v, 1)1, (6)
k= (vik; - BY + viky) - (0;BY + v )7, (7)
B = vifi+ vmBm+

V;Um(Ci — Cp) (B = 1) : (0;B* 4+ v, )™ 1 (Ci = Cr) 7! (Bi = Bm) - (8)

Details are given in Appendix A.

Simple bounds for these tensors can be obtained without any assumption about the geometry
of the phases by using the Voigt or Reuss hypotheses:

¢ for the Voigt bound, strain and thermal gradient are the same in the matrix and the
inclusions:

Ba—ghl B (9)

e for the Reuss bound, stress and thermal flux are the same in the matrix and the inclusions:

B =C':Cn , BN =k "k, . (10)

These bounds are too wide to be useful, but tighter bounds can be obtained for the B tensors
by using geometrical informations about the inclusions. The Hashin-Shtrickman-Willis bounds
[4] are established for a randomly dispersed set of aligned ellipsoidal inclusions, which gives:

- as lower bounds: leBe = (I, + Ec, ar: (C;I @ F= [4))_1 )

“BY = (I + Eppoar ¢ (k' ki — L)) (11)
- as upper bounds: WB* = (I4+ Ec, 4r : (C71: Co = L))
BT = (I + Byar s (k7" by — L)) . (12)



The Mori-Tanaka theory [5], which gives exact homogenized properties for dilute concentrations
(i.e. when fibers do not interact), predicts B tensors that coincide with the lower bounds of eq.
(11). The upper bounds of eq. (12) can also be obtained by using the Mori-Tanaka method,
by considering that fibers become the continuous phase, and that the matrix becomes the
dispersed phase with an ellipsoidal geometry. The upper bound is thus an accurate estimate
of the B tensors for very high concentrations (which are reached above the maximum fiber
packing, when the matrix becomes dilute and discontinuous). An accurate prediction of B can
therefore be obtained in the intermediate concentration range by using a mixture rule between
the lower and upper bounds:

B =

— Frnat(0)(*B) ™ + Frna () (**B) ™)™
B = ( )

(1

(1 — Frna(v:)(°BY)™" + Fra(vi)(*?BY) )" . (13)
The mixture function F,,.(v;) must be monotonously increasing and must satisfy F,;(0) =0
and Fr.(1) = 1. Ideally, it has to be fitted on experimental data, although a simple function

such as F,q(v;) = (v; + (v;)%)/2 gives very good results. This last mixture function has been
used in the present work.

A comparison between this approach and other widely used predictive models, such as the
Halpin-Tsai equations [6], is made in Ref. [14], where our method is shown to provide excellent
results.

3.2 Extension to composites with non aligned inclusions

Predicting the B tensors is difficult for a two-phase composite containing non-aligned fibers,
since no precise bounds can be established as in the previous case. To tackle this problem, we
have used the grain decomposition approach [7]:
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Figure 1 Grain model as a two step homogenization method.

The representative volume is decomposed into a set of aggregates containing the matrix in the
same concentration v, as in the representative volume, and aligned fibers with a concentration
=1 — v,. To keep unchanged the statistical description of the representative volume (i.e.



the concentration and orientation distribution of the fibers), the aggregates containing fibers of
direction p must have a relative volume dV/V, = ¥(p)dp. Each aggregate is first homogenized
using the above described technique, in order to provide an equivalent isotropic transverse
homogeneous material. In a second step, the different aggregates are themselves homogenized
into a single anisotropic material, using various assumptions for the distribution of strain and
thermal gradient between the aggregates. Three possible hypotheses are :

¢ the Voigt upper bound, which assumes a parallel assembly with constant mean strain and
thermal gradient over each aggregate:
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s the Reuss lower bound, which assumes a series assembly with constant mean stress and
thermal flux over each aggregate:

T=((CH e i = (G e =
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s and the Mori-Tanaka assumption, which assumes constant mean strain and thermal gra-
dient over the matrix of each aggregate:

(vi(Ci : BS) g + vmCp) : (vi(B) g + vy,
= (vi(ki : By + Unkm) : (0i(B") g +vmla)™
(UmBm + vi(B;i — Ci 1 (Is — BY): (Ci — Cr) ™ 1 (Bi — Bm))) g
+C : (vills = BY) : (Ci = C) ™" : (B: = )y - (16)
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Orientation averaging over the aggregates can be calculated directly using the a; and a4 ori-
entation tensors [2,7,11]. When the only known orientation tensor is a,, a4 can be determined
using the natural closure approximation.

Let us emphasize that, for two-phase composites containing inclusions of different shapes or
orientations, the Mori-Tanaka assumption gives a higher estimate of stiffness or conductivity
than the Voigt upper bound when the inclusions are stiffer or more conductive than the matrix,
and that an estimate below the Reuss lower bound is provided in the opposite case. This can
be explained as follows: consider, for instance, the stiffness of a composite containing stiffer
inclusions than its matrix. The most rigid aggregates are the ones which have the highest B¢
tensor. If the mean strain is the same in the matrix of each aggregate, the total mean strain
is higher in the aggregates having a larger B¢ tensor. The Mori-Tanaka assumption thus leads
to a non-physical behaviour, the stiffest grains undergoing the largest deformation. In this
work, we have therefore chosen to use the Voigt upper bound for the second homogenization.
Examples of aggregate averaging are given in Ref. [14].

3.3 Extension to multiphase composites

Although it is not possible to fully describe the thermo-mecanical behaviour of a multiphase
composite by means of the two tensors B¢ and B7, it is easy to extend the grain model to



composites containing more than one type of inclusions: in that case, the representative volume
is decomposed into aggregates containing a matrix of concentration v, and aligned inclusions
of only one type of concentration 1 — v,,. This set of aggregates is then homogenized using the
same assumptions as previously. An example showing the prediction of conductivity for a two
phase composite is given in Ref. [14].

4 EXAMPLE AND DISCUSSION

We consider the filling of a 5 mm thick container with Sheet Molding Compound (SMC). In
view of symmetry, only a quarter of the part is analyzed. Data from a common polyester -
glass fiber SMC have been used in isothermal flow calculations. The aspect ratio of the fibers
is 1000. The fixed finite element mesh covering the whole part is represented in Fig. 2.a, while
an example of temporary mesh generated during filling is shown in Fig. 2.c. The rectangula-
shaped initial load and the successive fronts of material during compression are represented in
Fig. 2.b. The orientation field is represented at different stages of the filling in Figs. 2.d, 2.e and
2.f by means of the two eigenvector-eigenvalue products of the second order orientation tensor.
It is interesting to note that the final orientation state obtained by compression molding greatly
differs from what can be observed for injection molded parts. The injection gate is indeed often
followed by a divergent region, where fibers orient perpendicularly to the velocity. The final
orientation is therefore rather anisotropic in injection molding. In compression molding instead,
fibers tend to be less oriented (since a compressed isotropic disc remains isotropic, for instance).
For multi-faceted parts like the container, important differences in gap width between the facets
are observed during the flow, which induce a sharp contraction tending to align the fibers with
the fluid velocity (Figs. 2.d and 2.e). The more compression progresses, the less this effect is
important as the gap width becomes uniform at the end of the filling (Fig. 2.f). These effects,
combined with in-plane deformation and transport, give rise to an unexpected final orientation
pattern.

The calculated fiber orientation field in the part has been used as input to predict its thermo-
mechanical properties. The bending and tension stiffness matrices have subsequently been
computed on each element of the fixed mesh, using the classical Kirchoff theory, and have been
introduced as a material property in the Finite Element structure computation code SAMCEF
(which is able to deal with anisotropic materials). Fig. 3 shows the deformation and the von
Mises stress in the container when it is clamped on its lower horizontal face and is loaded with
an internal pressure of 1 bar. The behavior of the part (Fig. 3.a) is compared to a simplified
case where fiber orientation is supposed to be isotropic (Fig. 3.b). One can observe that the
shape of the deformed part and the stress distribution are mainly dependent on the geometry of
the part. However, the camber is significantly lower in the case of flow-induced fiber orientation.

5 CONCLUSIONS

We have presented a global model that is able to predict the linear thermo-mechanical prop-
erties of complex composite parts from the flow-induced fiber orientation state. A decoupled
approach has been used to calculate the flow kinematics and the fiber orientation during the
compression molding process. This model leads to qualitatively good results in the case of



concentrated long fibers. The influence of fiber-fiber and fiber-polymer interactions on the flow
is however neglected. Our micromechanical model is also appropriate when various types and
concentrations of reinforcements are present in the composite. This model can provide a very
efficient tool to optimize the design of composite parts, taking processing conditions into ac-
count. To validate this approach, comparisons with experimental results will be made to test
both fiber orientation and thermo-mechanical properties.
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List of Symbols

P = Pressure (Pa) , ¥ = strain rate (s™!) , h = Normal closure velocity (ms~1)
S = Fluidity of the fiber suspension in the mold (m3s~*Pa™")

D = strain rate tensor (s™!) , w = rotation rate tensor (s7!) ,

I, = second order unit tensor , Iy = fourth order unit tensor

p = fiber orientation unit vector , ¥(p) = fiber orientation distribution function

as = }4 pp¥U(p)dp = second order orientation tensor

ay = }{ pppp¥(p)dp = fourth order orientation tensor

A= (Ar? —1)/(Ar? + 1), dp= —l—)l%—{—ag-w—w-ag—)\(D-ag—}—ag-D)
o = stress tensor (Pa) , € = deformation tensor , AT = Temperature difference (K) ,
¢ = heat flux (Wm™?%) | v = thermal gradient (Km™1),
C = Stiffness tensor (Pa) , 8 = thermal stress tensor (PaK ™) ,
k = thermal conductivity tensor (WK ~'m™1),
Ec,a- = fourth order Eshelby tensor for eigenstrain concentration for a material
of stiffness C, in an spheroidal inclusion of aspect ratio Ar
E) 4 = second order Eshelby tensor for eigen thermal gradient concentration for
a material of conductivity k, in an spheroidal inclusion of aspect ratio Ar
(z) = the average of the tensor z on the representative volume ,
(z), = the average of the tensor z on the matrix of the representative volume if y = m,

on the inclusions of the representative volume if y =1
G = fX(p)\If(p)dp, which mean average of the transverse

1sotropic tensor X over all the orientations.



Figure 2 Compression Molding of a container;
a. fixed mesh; b. initial load and successive flow-fronts;

c. temporary mesh example; d. e. transient orientation fields during filling;
f. final orientation field.

Only a quarter of the part is represented.
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Figure 3: Same problem as in Fig.6. Behaviour of the container under a 1 bar
pressure. Comparison between the effect of the flow induced orientation and the
1sotropic case. Isovalues indicate the von Mises stress, and w is the camber.
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Appendix A

The homogenised properties of a representative volume of composite are defined for imposed
mean strain (€), temperature difference AT and mean thermal gradient (v) by the following
relations:

- stiffness C and thermal stress 8 : (o) = C : (¢) — BAT ; (17)
- thermal conductivity & : (¢) = k; - (7) . (18)

To derive the expression of C', a mean strain € is supposed to be imposed on a representative
volume of composite. This mean strain can be expressed as a function of the mean strain in



the matrix phase using the definition (5):
(€) = vile); + vmle), = (0:B* + vls) s e),, (19
The mean stress is obtained using the constitutive equations (3,4) with AT = 0:
G = vi(0);, + vu(0),, = v:iCi : (€);, + VmCn : (€),, = (v:iCi : B* +v,Cr) : (€), . (20)

By inverting relation (19), the mean stress can be expressed as a function of mean strain in the
representative volume of composite, giving the expression (6) for C

The expression (7) for k is obtained in exactly the same way.

Computing 3 is less immediate. The representative volume is supposed to undergo a temper-
ature difference AT and a constant strain € is imposed in all this volume. The stress must be
equal in the inclusions and the matrix for equilibrium:

0i=Ci:e—BiAT=0,=Cp:e— L. AT = 6=(Ci—Cm)_1:(,3,~—ﬁm)AT (21)

Next,an opposite mean strain —e is superposed, in such a way that the total mean strain
vanishes. Using the relation (19) and (5), the mean strain in the matrix and the inclusions can
easily be computed:

(€); = €= B : (B +vnl)™):e; (22)

(6),, = e—(uBf+vnly)™") €. (23)

It is easy to verify that v;(€), + vn(€),, = 0. With the help of the constitutive equations (3,4),
the mean stress in the matrix and the inclusions is:

(); = Ci:(Iy— B : (iB* +v,L)™ ") e = BAT (24)

(), = Cm:(ls— (;Bf +v,1)7 ") € — B AT . (25)

Finally, the expression (8) for the homogenised thermal stress tensor £ is finaly obtained using
the definition (19).



