Effect of cooling rate on the solidification of a cylindrical
channel section.

Guy J. Ruddock and A. J. M. Spencer
Department of Theoretical Mechanics
Nottingham Universily

Nottingham

NG7 2RD

U. K.

Abstract. This paper presents a model of solidification for a fibre-reinforced circular cylindrical
channel section under plane strain. Cooling from the inside surface of a cylindrical section of the
liquid phase causes a solidification front to move radially through the thickness until solidification
is complete. Deformation which occurs in the liquid phase becomes “locked in” at solidification,
thus affecting the subsequent behaviour of the material. The driving force behind this mechanism
is the temperature distribution during solidification, which in turn depends on the cooling rate;
the paper quantifies the effects of this on the shape and residual stresses in the final solid part.
The model includes the so-called “spring-forward” result as a special case.

1. Introduction

Existing models of the sheet forming process for thermoplastic fibre-reinforced
materials generally consider only one phase of the material. This phase may be
viscoelastic or thermoelastic, depending on whether the focus of study is the flow
near solidification, or the subsequent cooling and distortion of the solid component.
However, Ruddock [1] recently offered a genuinely two-phase model of solidification
for a cylindrical sector in which a surface separating the liquid from the forming
solid gradually advances through the component. The solidification of a rectangular
slab was investigated in Ruddock and Spencer [2].

Results from this model are both qualitatively and quantitatively different from
an equivalent analysis which considers only the solid phase (as given, for example,
in O’Neill, Rogers and Spencer [3], and Spencer, Watson and Rogers [4, 5]). The
crucial feature of the two-phase analysis is that the solid region deforms as a result
of the falling temperature, and that this deformation causes shear in the liquid
which becomes locked in at solidification.

The present paper investigates the possibility of stress-free solutions during
the solidification of a circular cylindrical sector of fibre-reinforced material. The
material, which is assumed to be orthotropic, is initially in its liquid state, resting
on a circular cylindrical mould, cf Figure 1. The inner surface is cooled, and as
soon as solidification commences there, the deformation of the liquid is controlled
by the temperature-induced deformation of the solid. In particular, the liquid is
free to pull away from the mould, and it is assumed to be sufficiently viscous that
it does not simply flow away due to gravity.



[

Guy J. Ruddock and A J. M. Spencar

The model incorporates a volume change on solidification, and allows for diffe-
rent thermal behaviour in the two phases. The specific emphasis is on the relati-
onship between the cooling rate and the change in curvature of the sector.

Fig. 1. Cylindrical channel section (the mould is hatched).

2. Formulation

It is assumed that at time ¢t = 0 the material is in its liquid state at some tem-
perature T, which is above the solidification temperature T,. At this time the
material occupies a region vy < 7 < 71y, |8] < 8y, |2] < z; with respect to appro-
priate circular cylindrical coordinates. The fibres are assumed to lie in surfaces
T = constant, and to be arranged in a manner which is macroscopically consistent
with orthotropic symmetry: for example, a balanced angle ply lay-up, comprising
alternate unidirectional sheets with fibre directions @’ to the z-axis.

For times ¢ > 0 the liquid phase deforms in response to cooling from the inner
surface 7 = rg; for simplicity we consider only plane-strain deformations, so that
there is no displacement in the z-direction, and the in-plane (r-8) displacements
are independent of z.
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Cooling coutinues until time to, when the temperature on the inner surface
rcaches the solidification temperature T,. Subsequently a solidification front moves
through the material and the solid thus created deforms, once more in plane-strain.
The heat flux associated with elastic deformation is assumed to be negligible, and
so the temperature problem can be solved independently. For simplicity we neglect
heat loss from the edges |8] = 6o, and so the heat conduction equation reduces to

Con0rT kP 8T oT
(1) Al b ki
Or? r Or KT (1)

where NS) and rzf) are the conductivities in the radial and angular directions, cj is
the specific heat capacity, and pj is the density (the subscript h takes on the values
s or | when referring to the solid or liquid regimes respectively). If the interface
between the solid and liquid phases is given by = a(t), and L is the latent heat of
solidification, then balance of heat flux across the interface can be expressed by

@y 0T (r,1) b T (r,t)

K

= a'(t)L; 2
or r=a(t)t : or r=a(t)= ( ) ( )

clearly T is continuous at the interface r = a(t), and moreover T(a(t),t) = T,. Let
7(r) be the time at which a particle at radius 7 solidifies, so that

() = 2
7(a(?) = 1,
a(r(r)) = r.
We assume for the remainder of the paper that equations (1) and (2) can be

solved with appropriate boundary conditions, so that the temperature function T
is known.

The liquid phase is modelled as an “anisotropic thermoelastic liquid”. The radi-
al, angular and axial displacements of particles from their initial configuration at
time t = 0 are denoted by u, v and w = 0, and the corresponding non-trivial
strains obey the formulas

€r = Ur,
ess = (u+v,)/T, (3)
2e. = ug/T+v,—0/T,
where subscripted commas indicate differentiation with respect to the indicated
variables. The remaining strains
€,z = W,
Qe9, = U, +we/T, (4)

2e., = u,+w,,
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are all zero by virtue of the plane-strain assumption. The compouents of the stress
tensor are written ang cte.

We assume that the shearing of surfaces r = constant over oue another is
hindered only by the viscosity of the liquid matrix, and that the shear traction
on these surfaces is negligible during slow cooling. Thus we assume that .4 = 0,
.. = 0, for the liquid motion; since the deformation has plane-strain we also have
ds. = 0. We also assume that the fibres remain solid but flexible in this phase
of the material, and that there is insufficient time for any significant percolation
of the liquid matrix between the fibres. This gives the liquid phase some of the
characteristics of an orthotropic thermoelastic solid; in particular we propose that

the relationship between the principal stresses and strains can be characterised
by

Trr ¢y C12 Ci3 err — a1 (T — To)
Ops | = | €12 Ca2 Ca3 ess — a2(T —To) |, (5)
Oz 513 623 633 €zz — &S(T oF TO)

Org

0, 0,.,=0, 09.=0,

where the &; are elastic constants and the &; are coefficients of expansion in the
liquid.

The solid phase is assumed to behave like a conventional orthotropic thermoe-
lastic solid, and the displacements are denoted U, V and W. Once again, plane
strain is assumed, so that W = 0 and the following strains are all equal to zero.

€2z = W,z,
2ep, = V:: S W,O/Ta (6)
2., = U,z 5P VV,r-

The non-trivial strain-displacement formulas are

61‘7‘ = U,r?
oo = (U+Vg)/r, (7)
28,-9 = Uyg/T—}-V,.—V/T’.

However, since these displacements are measured from the configuration at time
t = 0 (when the material is liquid), the constitutive law is not quite straight-
forward.

In particular, the liquid phase does not accommodate shear stresses g.¢ OT 0,
for the reasons stated earlier; thus any such stress component in the solid phase
must be proportional to the increase in strain following solidification: for example
we have

g = 2¢e6(Eral, = Eraly(ry) ' (8)
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(recall that a particle which is initially at radius r solidifies at time r(r)). The
r-z and §- components of stress and strain are automatically zero due to the
assumption of plane strain.

Turning now to the direct stresses and strains: the linear constitutive law for a
conventional orthotropic thermoelastic material maintains that the direct stresses
are proportional to the relative strain, as measured from some natural stress-free
state, less a term due to thermal expansion. In the present case, this relative strain
is simply the absolute strain as measured from the liquid at temperature Ty, less
both the strain associated with thermal contraction of the liquid phase, and the
strain associated with the liquid-to-solid phase change (essentially this is equivalent
to measuring the strain in the solid from a hypothetical stress-free configuration
of solid at temperature T). Subtracting the thermal expansion terms o;(T — T)
from these relative strains indicates that the direct stresses are proportional to
terms such as &, — (&; + & (T — Ty)) — eu(T — Ts,), where e; are direct strains
arising on solidification. The full constitutive law for plane strain deformations of
the solid phase is thus

Orr 11 €12 €13 err — (&1 + & (Ts — To)) — (T - T)

Ogg | = | Ci2 Caz C23 o0 — (€2 + @2(Ts — To)) — o T — 71 I

;2 Ci3 €23 €33 €2z — (33 + &S(Ts SI= a3(T o3 T,)
Og, = 0, (9)
. = 0,

Org = 2666(&9], = 5r0|7—(r))'

The equations of motion are simply that the divergence of the stress fleld is
zero. For the case of plane strain this reduces to

a(7'r'r' 1 80',-9 Orr — Ogg -

ar r 00 T =il (10)
00,6 _1_3099 L 20,4
or r J6 r

(Note that these simplify further in the liquid region since o4 = 0.)

It is assumed that there are no in-plane tractions on the boundaries r = 7o, Ty
and |0 = 6,. In addition, during the exclusively liquid phase of cooling (0 < t <
to) the liquid is contained by the lower surface r = ry, and hence the condition
u(ry,t) = 0 must be satisfied for 0 < ¢ < to.

3. Displacement in the liquid

As mentioned earlier, we seek solutions for which the in-plane stresses are identi-
cally zero. However, since 0,4 is automatically zero, there is an arbitrary amount
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of shear possible in the solutions. To avoid an unresolved non-uniquencss, we assu-
me that solutions are symmetrical about # = 0. We make two further simplifying
assumptions for both the solid and liquid displacements: namely that circular
arcs remain circular arcs throughout, and that at each time ¢, each drcular arc
r = const, z = const has undergone a uniform stretch in the # dircection. Our ini-
tial justification for these is largely the simplicity of exposition which they deliver,
although it turns out that these simplifications do in fact yield an exact solution
to the problem.

After substituting from equations (5) a little rearrangement shows that the
in-plane stresses are zero provided that

u, = Ly(a)(T - To), (11)
u+vy = rLo(@)T = Tp).

The quantities £;(&) are simply constant material parameters which are explained
in the Appendix. The simplifying assumptions outlined above have the effect of
restricting the arbitrary functions which result from the integration of equations
(11). This integration yields

2 D =) / (T(s,8) = To)ds + £(2), (12)
v(r,8,t) = 8 [rLy(a&)(T — Ty) — u(r,t)].
Since u(ry,t) is zero up until time ?o, the arbitrary function f(-) satisfies

f(t)=07or 0 <t < 1. (13)

4. Displacement in the solid

In line with the simpliﬁcationé mentioned in the previous section we assume that U
is independent of 6, and that V is proportional to §. In this case, o, is identically
zero if and only if

V(r,8,8) = (F(t) = E(r))r6,
for some functions E(-) and F(-). After substitution using (9) we find that
Orr = C11€4r + C12€90 — }Cl(e) - }CI(&)(TJ - To) - Kl(a)(T — Ts)7
Ogg = Ci2€rr + C22E99 — Kz(e) - /Cg(d)(T, 2 To) - /Cz(a)(T ¥ TJ)7

and the solution to o, = 049 = 0 requires

U.(r,t) = Li(a)(T = T,) + L1(a)(Ts — To) + Lu(e),

U(r,t))r = E(r) = F(t) + Lo(a)(T = Ty) + Lo(@)NT, — Tp) + La(e).
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(The definition of the constants L;(«r), Ki(e) ete are given in the Appendix. In
particular, the presence of the symbol e in the constant Ki(e) denotes that the
constant may depend on all three compounents of the triple e = (e, €a,€3).) Dif-
ferentiating the second of these of these equations, and substituting into the first
yields

Lo(@)r T, (r,£) = Lof@)(T = T0) = F(8) = (rE()Y + Lo(@)(T, = To) + Lofe)- (14)

By noting that the right-hand side of (14) is of the form f,(2)+ fa(r), it is straight-
forward to show that the solutions of the heat conduction equation (1) that are
compatible with (14) are given by

T(r,t)="T, + k(r(r) —t), (15)
where
72¢,ps T
(r) = kg— ——————+ k17 7%, 16
( ) 0 2[{,.(,1)(1—*—]{3) 1 ( )
K®
S

and where k, ko and k; are constants. In fact this is a very special temperature
distribution, since the cooling rate is equal to the constant k everywhere for #p <
t < t,. It is also the only solution to the heat conduction equation in which the
spatial gradient of the temperature field is constant in time. The significance of
this remark will be pointed out in Section 7.

Substituting T(r,t) from (15) into (14), equating the parts dependent on ¢ and
r, and integrating, gives

F(t) = Lo(a)kt,

B(r) = Hale) / " r(5)ds — kLa(e)r(r) + Lo(@)(T. — To) + Lo(e) + f:i,

T ro

where P is constant. Hence

Ulr,t) = kLy(a) / r(s)ds — kLy(@)rt + rL(E)(T, — To) + rLa(e) + P,

V(r,0,t) = 8 [rkﬁo(a)t —kLy(a) /r 7(3)ds + rkLy(a)T(r) (17)
—rLo(a) (T, — To) — rLo(e) = P.

5. Solution during solidification

All that now remains is to apply continuity of the displacement at the interfa-
ce hetween the solid and liquid phases. Equating u(a(t),t) and U(a(t),t) from
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equations (12) and (17) gives

a(t)
flty =P+ kﬁl(a)/ T(s)ds = kta(H) L (o) + L (@)a(t)NT, - Ty)
+a(i(e) + Lu(a) [ " (T(s,8) = To)ds.
a(t)

In particular, setting t = 2o and a(ty) = 7o, the coustant P is determined as
PR= f(to) + k’l"oto[,l(a) == L:I(C_Y)TQ(T_, - T'o) == 'roﬁl(e) (18)
(@) / (T(s, o) — To)ds.

From (13) it follows that if f(t) is continuous at ¢'= 2o, then f(fo) = 0 and P is
determined by (18). However it is possible to produce plausible arguments which
suggest that f(¢) jumps discontinuously at ¢ = o (see [1]). To allow this possibility
the term f(fo) is retained in (18) and subsequently.

When f(t,) is specified there are no remaining unknowns in the problem, and
so it is not possible to ensure continuity of the tangential displacements. There
are two possible reactions to this result. The first, and most obvious, is that we
have constrained our solution too heavily: there is no stress-free solution of the
form we chose. The second possibility, which was also discussed in [2], is that it is
inappropriate to demand continuity of the tangential displacernent at the interface.
Indeed, it has already been assumed that in the liquid phase, surfaces r = const
may slip over one another unhindered by shear stress; to allow discontinuity is
merely to suggest that this still holds true at the interface itself. [t seems likely that
this issue can be fully resolved only by a careful dynamic analysis of the material
behaviour at the solid-liquid interface. Indeed this comment applies equally well
to the question of a discontinuity in f at o, which was discussed in the previous
paragraph.

For the remainder of this paper we adopt the viewpoint which permits the

discontinuity in the tangential displacement. Thus the displacements are given
by

U(r,t) = kLy(e) / 7(8)ds — kL, (a)(rt — rotg) — (To — T,)L1(&)(r — 7o)
e () /rrl(:ro _T(s, to))ds + f(to),

V(r,0,t) = 0 [rkﬁo(a)t +rLo(a)(To — T,) — rLo(e) — kL () /r T(s)ds (19)
+7‘k£2(a)‘r(’r) = Totokﬁ]_(a) = TQ(T() = T,)L‘,l(d) + T(?ﬁl(e)
_E*(&)./r I(TU —~ T(s,ty))ds — f(tn)] ,
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All of the quaatities in these equations are known and so they represent the exact
stress-free solution to our problem during solidification.

In order to interpret this solution more easily, we make some approximations
based ou a typical cross-ply or balanced angle-ply fibre-polymer composite:

Q) >> g, 3, C
&, >> Qq, 03, €

99 D> €1, C1a, C13, C23, € >> €a, €3,
92 >> €11, Ci2, C13, Ca3.
It follows (see Appendix) that

Lo(z) = Li(z) = £y, La(z) =0,

whenever z is a, &, or e. With these approximations (19) simplify to

U(r,t) = koy {/r T(s)ds — (vt — roto)] + ey (r — 7o) + f(to)

To

_a, [(To L o) / (T - T(s, to))ds] , (20)
V(r,0,t) = —0U(r,1).

Thus in this approximation g49 = 0, so that there is no stretch of material curves
which lie in the surfaces r = constant (indeed this is to be expected since in the
limit, our approximations are equivalent to thermally and elastically inextensible
fibres). Hence the deformation consists of a radial displacement given by U(r,t)
and a shear on surfaces r = constant for which these surfaces do not stretch, but
flex to accommodate this radial motion. Furthermore the deformation consists of
a part independent of the cooling rate k, which inspection shows is the result of
thermal expansion in the fluid state and the expansion at solidification, and a part
proportional to k. Clearly the effect of the cooling rate becomes relatively more
significant as k increases. Although this has been demonstrated only for the special
temperature distribution (15), it may be conjectured that more general tempera-
ture profiles will lead to the qualitatively similar conclusion that rapid cooling

rates will have a large effect on the amount of distortion during the solidification
phase.

6. Solution after solidification

The change in curvature at the end of solidification was given in the previous sec-
tion. However, the forming process is not fully complete until the component has
cooled to room temperature. This last part of the calculation is a straight-forward
problem in linear thermoelasticity: it is necessary to simply add the solution of
Section 5 at time ¢, to the solution for a solid circular ¢ylindrical sector under-
going a change in temperature from T(r,¢,) to room temperature T.. A numerical
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solution to the problem is acceptable, as is an approximation based oun thin shell
theory.

However, the basic behaviour of such a solution can be ascertained with minimal
effort, by breaking down this temperature change into two hypothetical parts. First
heat the solid back up to the solidification temperature T, (or infinitesimally below
it, so that it does not melt). The constitutive law is linear, the boundaries are free
of traction and imposed displacement, and the change in temperature during this
stage is proportional to the constant k: thus the resulting stress and displacement
must also be proportional to k.

Now cool the cylinder to room temperature T,. The stress and deformation
introduced during this stage of cooling must be proportional to T, — T}, by similar
reasoning. In fact, there is no stress introduced during this second hypothetical
stage of cooling. This is a result of the so-called spring-forward phenomenon of
O’Neill, Rogers and Spencer (3], in which it is shown that an orthotropic thermoe-
lastic solid subjected to a uniform change in temperature curls up but does not
develop any stress.

Hence for the complete solidification process, starting with liquid at tempera-
ture T, and ending with solid at room temperature T, we find that:

» The magnitude of the change in curvature increases with both the cooling rate,
and the difference between the solidification temperature T, and the final resting
temperature 7. '

o The stress induced is proportional to the cooling rate alone.

7. Discussion and Conclusions

The stress and deformation induced by the solidification of a circular cylindrical
sector of thermoelastic fibre-reinforced material have been given. Both the liquid
and solid phases were seen to be free of in-plane stresses during solidification,
although this can only occur in the specific case when the temperature in the solid
is given by equations (15, 16). This is the sole solution to the heat conduction
equation for which the spatial gradient of the temperature field at each point
remains constant throughout solidification.

It appears that each particle of the solid can accommodate the particular tem-
perature gradient which existed at its creation from liquid: as long as that gradient
persists, the material may change its curvature in response to a uniform lowering
of temperature, but no in-plane stress will be induced. The curvature change at the
instant when solidification ceases, increases with with the cooling rate according
to equation (19).

The lack of in-plane stress with the above cooling regime is analogous to the
so-called “spring-forward” phenomenon of Watson, Spencer and Rogers [3]. That
result concerns the deformation of a solid stress-free cylindrical sector in response
to changing temperature: as long as the temperature change at each point of the
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sector is the same (or equivalently, the spatial gradient docs not change), the sector
curls up, but does not develop any in-plane stress.

Ouce the sector has completely solidified and subsequently cooled to room tem-
perature, both the stress and change in curvature increase with the cooling rate;
in particular, the stress is proportional to it. In fact, the limiting case of infinite-
simally slow cooling coincides precisely with the spring-forward result mentioned
above.

These results may not be welcomed by the processing community, since they
indicate that the residual stresses induced by solidification can be minimized only
by allowing the cooling rate to fall to zero, ie by extremely slow cooling.

8. Appendix

In order to keep the number of constants to a minimum, we have found it con-
venient to introduce the following “functional constants”. For the constant three-
vector z = (z1,%3,23), define K(z) and K(z) by

3
K:;(ID) = Z C,‘jil:j,

}C,(IE) = Z Eij.'Ej.

Now define £;(z) and £;(z) by

CQQK:l(I) = cm}Cg(x)
/£ = ,
1(:1:) C11C2 — C%z
ﬁq(:z:) - Cnlcz(l’) = 012K1($)7
) C11C29 — €3y
= 522}61(17) = 612]62(.’13)
L — —~ .
1(2) _511522 = C%g
= ckq(z) - 512“1-(”’).
€11822 — Ciz
and let
Lo(z) = Li(z) — La(z),
Lo(z) = Li(z) = Lay(z)

These further simplify to

cia(caz + 1) — caalen + 1)
€11€22 — Cly

I IR e A
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5 Conlig — Cratay

L) = o + oy———"—,
Cri€ay — €

CiiCag — Cralyy

Ty + g,

CliCa2 — €Yo

Lafx)

with equivalent formulas for £;().
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