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ABSTRACT

This paper outlines the flow and fracture behaviour of 17% and 25% SiC
particulate reinforced 2124 aluminium alloys under different stress systems.
Tensile and compressive testing and SEM studies reveal marked differences
in ductility and the fracture path between the two modes. Though the
strengths are comparable the tensile behaviour is notch sensitive and thus
more brittle. Tensile failure originates at defects and inclusions and
spreads across transverse plane with limited plasticity. In contrast, greater
compressive strains arise with sliding along the 45° plane of maximum shear.
Interrupted testing showed that these failures occurred through linking of
micro-voids formed around particles. These voids nucleate from matrix
material failure under the high local strains induced within a dense,
immobile dislocation field surrounding particles. An initial dislocation field
already exists at these sites due to matrix distortion as the two components
in the material cool at different rates from high-temperature processing.
The applied strain serves to increase the density of dislocations and to
decreases their mobility to the critical condition required for failure.

Combined torsion-tension and torsion-compression loadings were applied
incrementally for two stress paths (i) radial and (ii) stepped. Pure torsion,
tension and compression tests were conducted under incremental loading to
establish the yield stresses and the hardening behaviour for the mmc in its
low and higher strain ranges. The results of all tests show that the yield
locus for the material obeys a Mises description. The deformation behaviour
is compared with that predicted from the Prandtl-Reuss plasticity theory.
Regions of elasticity are apparent for both paths. However, the shear
moduli under path (ii) appeared to be increased by larger magnitudes of
axial stress in both senses. Flow beyond the yield point under (i) and (ii)
reveals parabolic hardening and consistency with the normality rule but
the material is essentially brittle under all loadings except compression.
This points to a the use of a more appropriate flow theory modified with a
damage parameter sensitive to the sense of the stress.

1. INTRODUCTION

Metal matrix composites originate from dispersion hardened alloys
developed in the 1950’s. Fibre-reinforced metals were introduced in the 60's
but high production costs precluded their widespread use. There followed
in the 70’s the dual phase steels in which hard martensite particles were
embedded in a softer ferritic matrix. This structure is similar to an mmc in
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Fig. 1 Comparison between specific strength and specific stiffness in tension
(Key: a E glass/epoxy, b S glass/epoxy, ¢ woven glass/epoxy, d kevlar/epoxy,
e carbon/epoxy, f carbon/peek, g carbon/polyimide...contd within Fig.2 caption)

which ceramic particles, whiskers or fibres are embedded in a metal or an
alloy matrix. This combination provides good transverse properties,
workability, low cost and weight. Their major advantage is the increase in
stiffness and strength they can offer over certain other materials. The
elastic moduli of mmc’s lie between those of ceramics and metal alloys with
comparable densities.

Fig. 1 shows a plot of specific tensile strength o/p versus specific

stiffness E/p for a range of materials. On this basis it is apparent that
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Fig. 2 Comparison between specific strength and specific stiffness in torsion.
(Key continued: h graphite/epoxy, i boron/epoxy, j boron/aluminium,k SiC/Al whisker.
1 SiC/ceramic, m 2024 Al alloy, n 1025 steel, o Ti, p pine. g SiC/Al particulate)

mmc’s (materials q and k) outperform wrought metals (m, n and o) in both
modes. They do not match the strength of epoxy resins with uniaxial kevlar
and carbon-fibres (d, e and f). The strengths of glass-fibre composites (a,
b and c¢) are comparable to mmc’s despite their reduced stiffness. Fig. 2
shows a plot of specific shear strength /o versus specific stiffness G/p for

a similar range of materials. It is clear that mmc’'s (j, k and q) outperform
many other materials in a shear mode. Though a uniaxial SiC reinforcement
of mmc (material k) is better that the present particulate mmc (material q)
under tension (Fig. 1) it offers no advantage under shear.



Stress (MPa)

In the last 10 years a number of mmc's have appeared but the more
common combinations are where SiC or TiC are used to reinforce a pure
aluminium or an aluminium alloy matrix [1]. Three forms of reinforcement
are available: particulate, whisker and continuous strand. The properties of
the composite will depend upon the particular constituents and volume
fraction used but all mmc's show improvenments in stiffness, wear and
fracture resistance over the matrix material. Fig. 3 compares the yield and
ultimate strengths for a number of typical SiC/Al and SiC/Al-alloy mmc’s.
This shows that the strengthening of a pure aluminium matrix (1100) is
inferior to that found for a similar strengthening of its alloys (2024, 2124,
5083, 6061 and 7075). The strength of these various matrix materials is
increased the most for large volumes of whisker reinforcement. Fig. 4a
shows that there is a limit to the increase in strength that can be
achieved. The maximum strength is achieved from 30% SiC particulate in a
4.5% Al-Cu alloy (2124) matrix.

The elastic modulus of this mmc increases continuously with the
addition of up to 60% SiC particulate [2]. Unfortunately, these increases in
strength and stiffness occur with a loss in tensile ductility of the
composite (see Fig. 4b); this being a major limitation of all mmc’'s. The
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Fig. 3 The yield and ultimate strengths of SiC mmc's

present paper examines further the flow and fracture behaviour of an mmc
with 17% and 25 % volumes of 3 pym SiC particles in a 2124 matrix. The mmc

was manufactured by BP. A mixture of atomised aluminium powder and SiC
particles is heated in an evacuated stainless steel chamber then
isostatically compacted before extruding to a 1" diameter bar. To optimise
its properties the bar requires solution treatment at 505°C for 1 hour,
followed by a water quench and naturally ageing at room temperature for 7
days. This treatment was applied to oversized testpieces at a common
intermediate stage of their manufacture.



Tenslle Strength (MPa)

The uniaxial studies were made to examine the influence of strain rate
on compressive strength. SEM and acoustic emission techniques were used
to establish the influence of mode of deformation upon the fracture
mechanism. Etching and hardness testing reveal the size and distribution of
the particles and the distortion of the surrounding matrix. A number of
probable strengthening mechanisms are discussed. These will reveal that
the improved strength of an mmc is controlled by the size and spacing of
the particulates, the matrix grain size, dislocation density, sub-grain
formation and strain hardening.

In practice, the stresses imposed by service loadings are likely to be
complex. When safety factors are reduced to save weight the stresses in a
material will approach the yield condition. In more conventional engineering
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Fig. 4 Influence of volume fraction upon strength and ductility of extruded mme

alloys plasticity will offer the safety margin required. The present study
examines whether mmc's can be employed in a similar manner when
operating close to the yield point under combined stress states. Results
from combined tension-torsion experiments on the 25% particulate mmc are
compared with the classical Prandtl-Reuss theory of plasticity [3,4]. There
is evidence for a Mises plastic potential [5] and a rule of normality within
the plastic range of an mmc but the range is much narrower than can be
expected from wrought materials. It will be shown how a damage parameter
can account for the extent to which void damage restricts the plastic flow.

2. MATERIAL CHARACTERISATION

2.1 Hardness

Heat treated samples of material were prepared by mounting in acrifix
moulds and polishing to a 1 pum finish. Vickers indentations were made to
enclose several particles under a 200 gm load. Micro-hardness tests of the
matrix material were made under a 10 gm load. The respective tests gave
comparable VPN's of 188.5 and 205 which shows that the matrix is hardened
by the embedded particles beneath it.

2.2 Particle Size

Keller’'s reagent (concentrated acids: 1 ml HF, 1.5 ml HCl, 2.5 ml HNO3
mixed with 95 ml of water) attacks the 2124 Al-alloy matrix preferentially.
It can be used to reveal the grain boundary distortion and to expose the
particle orientation and spacing. Preparation was similar to that described



for hardness testing. Etch times of 20, 40 and 120 secs left the SiC-
particles untouched to reveal that their size varied between 2 and 5 pm.
Fig. 5a shows their angular appearance and non-uniform distribution. For
the longest etch time a reaction occurred between etchant and matrix
producing a brittle chloride within shallow surface cracks around the
particles (see Fig. 5b).
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Fig. 5 Particle orientation and distribution following 20 & 120 s etching

2.3 Strengthening Mechanisms

The strengthening and stiffening effect of the particles is due to a
combination of the following: (i) the creation of dislocations at the
interface, (ii) spacing of particies impeding dislocation motion, (iii) reduced
matrix grain size, (iv) sub-grain formation and (v) strain-induced Iload
transfer from matrix to particle.

Internal stresses arise following cooling during heat treatment. This
leaves the matrix in tension and the particle in compression so that
inelastic strair is induced in the material around the particle. The local
plasticity creates a dislocation field at the interface. The density of these
dislocations, o, restrict further plastic flow so increasing the strength, o,
according to [6]:

o= aGblp (1)

where 0.5 < a < 1.0 is a constant, G is the shear modulus and b is Burger's
vector. The particle size, d, appears within Eq. 1 indirectly since p is
inversely proportional to d. Thus, for a given volume fraction, V¢, the
smaller the particle the greater will be the strength. An estimate of an
increase in strength of 20 MPa arises from this source [7].

Orowan strengthening [8] relates to the spacing, L, of hard particles:

o=2Gb/L 2)
where for a given Vr, L is proportional to d. Thus as o o 1/d, the

contribution to strength from Eq. 2 is not likely to be more than 10 MPa
for an mmc [7]. The matrix grain size, D, is reduced by particles acting as



nucleation sites during solidification. Hall and Petch [9] showed that the
corresponding increase in strength is:

o=KND (3)

where K = 0.1 MPa/m, is a constant for high angle boundaries and D may be
estimated from the particle size and volume fraction in: D = d(1/Vr - 1)3/1,
Taking Vr = 0.017 and d= 3 x 10-¢ m, Eq. 3 gives a greater increase of o=

44 MPa. This source will account for the increased hardness observed
where recrystallisation of the matrix grains is inhibited by particles.

The grain size is further reduced from the formation of sub-grains as
dislocations are re-arranged into boundaries within grains (see Fig. 6).
This is a recovery process driven by the energy stored within the
distorted matrix at the interface. The strengthening effect may again be
estimated from the Hall-Petch Eq. 3 when K = 0.05 MPa/m, for lower angle
boundaries.
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Fig. 6 Matrix sub-grain formation

The work hardening rate of an mmc is influenced by the dislocation
network in two ways. Firstly, under a low applied tensile strain, € a load
transfer occurs between the matrix and the particle. The increase in
applied stress from this source is estimated to be [10]:

o, =9GV, /2 (4)

As the true strain is increased further dislocations are generated with an
increasing degree of misfit between the matrix and particle. An estimate of
the increased flow stress is given as [10}):

o, =5GVQV, bld\e (5)

Note, that these estimates of increased strength are relative to the matrix
alloy which itseif has been strengthened by precipitation hardening. Thus,
summing Eqs 1 - 5 will provide a qualitative account of the increased
strength arising from the addition of particulates to the alloy.

3. TENSION TESTS

Testpieces were machined longitudinally from the bar using a tipped
tool. They were heat-treated with oversized dimensions. Therafter, a 15 mm
long central parallel section was reduced from 6.43 mm to 4 mm diameter
with 2.5 mm transition radii to ensure that all tensile failures occurred
within this gauge length. A rate of continuous straining of 14 x 10-4 s-!
was applied in an Instron 4206 machine. A strain gauge was bonded axially



to determine the elastic tensile modulus. Additional tensile tests were made
on an aluminium alloy of equivalent composition to the matrix alloy (2124)
using standard dumbell-shaped testpieces. Table 1 compares the strength
and ductility of the three materials. It is apparent from this that the
particulate increases strength and stiffness at the expense of ductility.

The mmc failure surfaces aligned with transverse planes. They revealed
two sites of crack initiation: (i) at inclusions arising from processing and
(ii) at surface defects produced from machining. Between the SiC particles

Table 1 Effect of SiC particulate on a 2124 Al alloy

Material E/GPa €rt/% Y Out/MPa
Al-alloy 72 12 300 475
17% SiC 101 6 480 650
25% SiC 110 4 490 630

and the matrix dispersoids the ductile fracture surface appeared dimpled.
The dimple diameter varied from 1 pm around dispersoids to 5 pm around

particles (see Fig. 7a). Some particles pulled out, others cracked either
parallel to the fracture plane or perpendicular to it as shown in Fig. 7b.
Particle cracking is believed to occur during extrusion, the fragments then
being held together by residual compression in the matrix.
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Fig. 7 Dimples and cracks within the fracture surface

4. COMPRESSION TESTS

Cylindrical testpieces, 10 mm long x 5 mm diameter, of the mmc and the
matrix alloy, were compressed between sheets of ptfe and silicon grease in
a Hounsfield tensometer. The length changes were measured following
repeatedly unloading from the plastic range. Other testpieces were
continuously strained to failure at rates of: 14, 69, 200 and 685 x 10-4 s-!
in an Instron machine. Some tests were interrupted for SEM examinations of



sectioned planes lying at 45° and 90° to the stress axis. Assuming a zero
strain rate for the incremental tests, Table 2 summarises the results
obtained for the two materials:

Table 2 Strain rate sensitivity of a 17% SiC mmc

£/10°%s"! EIGPa e, /% o, /MPa o, /MPa K n  Mat
0 74 25 323 627 300 0.250 2124
0 104.8 13 433 830 1089 0.130
14 103.8 29 517 880 1058 0.125
69 103.4 27 509 840 1002 0.122 mmc
200 99.8 26 503 837 976 0.123
685 101.1 27 467 802 959 0.132

An number of empirical representations of the flow curve were
examined. Log-log plots between the true stress and natural plastic strain
(see Fig. 8) revealed that the flow behaviour conformed closely to
Holloman’'s law [11}:

clo, =(le) * (6)

where n is the hardening exponent, 0. and €, are constants. Table 2 shows
that n remains constant but the intercept decreases with increasing rate.
Modifying Eq. 6 to account for strain rate sensitivity:

c=Kegmg? (7)

The best fit to the data is found from taking K = 890, m = - 0.026 and n =
0.126. The negative index for an mmc in Eq. 2 is associated with a fall in
the dislocation density as voids coalesce more rapidly under an increasing
rate [12]. This implies that the flow process is time-dependent. The
behaviour is unusual in that the material appears to be slightly stronger
under a slower rate of straining. In contrast, a positive strain rate index
is found for polycrystals where the dislocation density increases with
plastic strain.
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All testpieces failed on the 45° plane of maximum shear. Exposed
particles drag over this plane to produce furrows that obliterate the true
fracture surface (see Fig. 9a). Interrupting the test and sectioning the
testpiece along the two planes revealed voids between 1 and 10 pm in
diameter (see Fig. 9b).
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Fig. 9 Compressive fracture plane (a) after failure and (b) before failure

Voids nucleated between densely packed particles on all planes but
only coalesced to their largest size, with an average number of 37 per mm?
of a 45° plane. These voids form in the matrix under the high internal
strains in regions of greatest particle density. Debonding of particles can
occur as voids grow around them within a narrow band containing the
fracture surface [13]. Large particles, 10 pm diameter or greater, are more
likely than small particles to contain defects causing them to crack [14].

5. COMBINED LOADINGS

Combined tension-torsion and compression-torsion tests were applied to
the 17% and 25% SiC mmc’s in a special purpose test rig [7]. Axial loading
was applied via an air cylinder and torsion was applied through a pulley-
wire system. Axial and shear stresses were calculated from a series-
connected load cell. Testpiece elastic strains were found from a 3-element
strain gauge rosette; one element was aligned with testpiece axis, the other
two elements lay at 45° to this axis. Larger strains were calculated from the
axial displacement and twist recorded by lvdt's and a rotary potentiometer.
All transducers were powered and their outputs recorded within an RDP
500 data logger.

The combined stress tests and pure torsion tests were conducted on
tubular testpieces. The heat treatment was applied to oversize blanks
during machining of the extruded bar. The blanks were then finished
machined to gauge dimensions: 14 mm o.d., 12 mm i.d. and 7.5 mm long. The
ends were enlarged through 1 mm fillet radii to fit 25 mm diameter grips
with 18 mm flats [7]. The 1 mm wall thickness is representative of bulk
behaviour in a material where the particulates are not greater than 5 um
diameter. After testing, additional miniature tension and compression
testpieces were machined from the unstrained ends for testing on a
Hounsfield tensometer.



5.1 The Yield Locus

In the determination of the yield locus from stepped stress paths, a
small offset shear strain (0.05%) was used to determine the yield stresses.
This allowed the same testpiece to be used for a number of torsional
probes with different amounts of constant, elastic axial tension or
compression. The offset strain definition of yield produces a small amount
of plastic deformation with each probe. In a single testpiece this cumulative
effect of strain history leads to deviations in which the points fall on
either side of the flat region of the locus. Yield points were also
determined from radial tests, from torsion, tension and compression at an
equivalent offset strain wvalue. Fig. 10 compares the initial yield points
obtained from all loading paths on the 17% material with a theoretical von
Mises yield locus [15]. This locus is given by:

=02 (&)

where go = 490 MPa is the tensile yield stress of this material.
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Fig. 10 Yield locus for mme showing stress paths and normality

Tension, compression and torsion tests may also be used to examine the
appropriateness of a Mises potential for subsequent plasticity. If this is so
a Mises definition of equivalent stress and strain gives a single flow curve.
This implies that plots of true stress versus natural plastic strain for
tension and compression should coincide. These, in turn, should coincide
with a torsion curve when its axes are converted to equivalent stress and
plastic strain (o= [3t, € = YP/{3). The double log-plot in Fig. 11 compares the
equivalent flow behaviour for incremental loading under each mode.

The tensile and compressive flow behaviour is similar but the strains
are far greater than was achieved from torsion (= 1%). By far the greatest
strains can be achieved from compression (:x 30%). The equivalent strains
from torsion lie in a range lower by two decades. Points from all tests lie
on a single line for which Hollomon's constants (Eq. 6) are: n = 0.104 and &
= 1.65 x 10-3. This similarity in strain hardening appears to be
independent of different modes of deformation. Transverse tensile failure
limits the maximum strain to 6% while shear sliding along 45° planes
provides a five-fold increase in axial compressive strain. A sudden
transverse failure under torsion limited the amount of shear strain to
between 1 and 2%.
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Fig. 11 Equivalence in tension, compression and torsion for a 17% SiC mme

5.2 Plasticity Theory

The Prandtl-Reuss theory identifies an increment of total strain with
the sum of elastic and plastic components. The elastic component is given
by Hooke's law and the plastic component by the flow rule [16]. Normality
between the plastic strain increment vector and the yield surface is implied
(see Fig. 10). The theory admits any combination of stresses when written
in a tensor notation:

de’ = (3d6 /2H '3)0, +[do,/2G + (1 - 2v)8,da,, /3E] )

The first term in Eq. 9 is the plastic strain increment in which A is the
plastic tangent modulus. The latter is the derivative to a suitable strain
hardening description to an equivalent stress-plastic strain curve. That is:

o=H(|[ de?), H'=do/de’ (10a.b)
where 0 and # are given by the corresponding Mises definitions;
o=V32)V(o,/0,), &7 =NQ2/3)N(elel) (11a,b)

Using a deviatoric stress tensor implies that hydrostatic stress does not
influence the flow stress. For this to occur the material must remain
plastically incompressible. The material’s compressibility is attributed
solely to elasticity. Thus, within the bracketed term ({ ]) of Eq. 9 the
elastic component of strain is the sum of a shear and volumetric
components where E, ¢ and v are the usual elastic constants. The present
study requires a reduction of Eq. 9 to one axial stress and one shear
siress. This gives the total axial and shear strain increments as [17]:

de!=(do/H '0)o + do /E (12a)
dy'=3do/H'o)c+dz/G (12b)

The current equivalent stress, g, defines a flow potential that is assumed to
be an inflation of the initial locus. Eq. 8 becomes;

- 11 -



o2+ 372=g? (13)

where o follows from the strain hardening law (Eq. 10a). Differentiating
Hollomon’s Eq. 6 gives the plastic tangent modulus:

H'=(no,le )olo,)="m (14)

where 0o and €, are respectively the stress and strain at yield and nis the
gradient of the double-log plot in Fig. 11. The integration of Egs 1lla,b to
give the total axial and shear strain components, €t, yt, will depend upon
the stress path as will now be shown.

5.3 Radial Loading

A radial path is one in which the two stresses increase proportionately
when loading a material into the plastic range. Referring to Fig. 10, the
stress gradient R= t/0. Substituting from Egs 13b and 14b and introducing the
normalised stresses: S= g/do and T= t/0s, Eqs 12a,b integrate to
total strains:

T s

e'= (g, /m)(1 + 3R*)L-arae '[ st-m12 45 + (o, /E)I ds (15a)
I; 0 T

y t=(GRe, Im(1 + 3R 200m [ s10is 454 (o 1G)| dT (15b)
S; 0

The elastic strain components (final terms in Eqs 15a and b) contribute to
the total strain under all stresses (S, 7). Plasticity (first term) commences
from the stress state at yield (S:, Ti), i.e., where the path intersects the
yied locus. With these normalised states defining the upper and lower limits
to each of the first integrals, Eqs 15a,b lead to:

el=eXl 3R L2 L2a (S e § 15+ o §/E (16a)
y t=3Re (1 +3R 3)(-0)/2a (§ Va_§ 10y 4 6 T/G (16b)

Substituting n=0.104, 0, = 490 MPa and &, = 1.65 % 10-3 in Eqs 16a,b allow for
the predicted flow behaviour to be compared with an experiment for which
R = 3.68 in combined tension-torsion (see Fig. 12). The material behaves
elastically while the stress state lies within the initial yield locus. The
gradients of the linear paths define the elastic moduli in compression and
shear: £ = 133 GPa and G = 45.5 GPa. Plasticity commences when the
stresses are: S; = (1+3R 2)-% = 0.155 and 7; = RS; = 0.57. Substituting into
Egs 8a,b gives the total axial and shear strains in the plastic region. It is
seen that while the theory (the u-curves) overestimates the stress and
strain observed. The radial test was taken to fracture but the material is
more brittle than the theory can admit. This suggests a modification using
a damage parameter (see section 7.3). Dividing the first terms within Egs
16a,b, shows that a radial path predicts a linear plastic strain path with
gradient path yf/ef = 3R. This behaviour follows from the rule of isotropic
hardening where the initial yield locus expands, retaining its shape and
orientation, to contain the current stress point. Radial loadings [15]
confirmed that the strain path directed along the normal to the locus at
the current stress point (see Fig. 10). Thus, void damage does not affect
the ratio between the strain increments.

=" i3 =



Fig. 12 Axial and shear flow under a radial path (17% SiC)
(Key: u - undamaged, d - damaged, —&——experiment)

5.4 Stepped Loading

The stepped paths (see Fig. 10) maintain an initial elastic axial stress,
oi, constant either in tension or in compression while the shear stress is
increased. Substituting Egs 13b and 14b into Eqs 12a,b provide the two
total strain integrals in dimensionless forms:

S-

T i
e'= (38051./11)_‘. (5;2"' 3733020 T AT + (ao/E)j ds (17a)

T; 0

T T
yi= (Qeo/n)_‘- (Sl.2 + 37243028 T24T + (oO/G)j. aT (17b)

T; 4]

where (S;2 + 3T:?) = 1. Integrating Eqs 17a,b:

e'=[e S/(1-mI(S}+3T2)1-2)/22 - 1] + (0 /E)S, (18a)

T

y‘=[3€ol(l—n)][ T(S[2 + 3T?)(t-8)/2a s I (51.2 + 3T $H)(L-2)/22 g7 4 GOT/G(18b)

I;

The integral remaining in Eq. 18b must be solved numerically since the
power is non-integer. With constant compression o; = - 260MPa, we have S; =

- 0.531 and 7T; = 0.489. Making similar substitutions as before Eqs 18a,b

predict the component stress-strain curves shown in Fig. 13. The first
diagram shows that the initial elastic axial strain 0o/ E remains constant while

the shear stress increases within the yield locus. The second diagram

shows that the material responds elastically to the increasing shear stress

- 13 -



where the gradient defines the shear modulus. Plasticity in both axial and
shear strain components commences at the intersection between path AB
and the yield locus; o0i = - 260 MPa and t; = 239.6 MPa (inset). The ( —®—— )
superimposed test data in Fig. 13 shows some contrasting behaviour.

Firstly, there is not so clear a division between elastic and plastic
behaviour. The axial strains were constant initially but departed sooner
that the theory. Consequently, the yield point and the modulus are less
clearly defined. Secondly, modifications to the theory are again required to
account for loss in stiffness and low fracture strain due to void damage.

Eqs 18a,b show further that under a stepped path we should not
expect a constant ratio between the plastic components of strain. That this
was confirmed experimentally [15] adds support to combining the rules of
normality and isotropic hardening for outward loading paths.

£V % 8"/ %
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Fig. 13 Axial and shear flow under a stepped path (25% SiC)

5.5 Reversed Loadings

In the second stepped path, an initial plastic shear stress, o, = 296
MPa, was held constant. The testpiece was then probed alternately in
compression and tension to a stress level of * 246 MPa. Eqs 12 - 14 provide
the two total strains for path ABC in the dimensionless forms:

€'=(¢/n) j (§2+3T2)1- 302268248 + (6 /E) I ds (19a)
0 0
T T;
7= (3¢, T /n) J. (5% + 372 )22 845+ (0,/G) J. aT (19b)
T 0

1
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Integrating Eqs 19a,b:

N
ehﬂqﬂl-mH&52+3ﬂﬂ“Wb—j(S2+3ﬂ2ﬂ““””dﬂ+(qﬂﬂs (20a)

0
y'=[3e,T/(1 - MI(S?+3T2)\-22-3T 2 + 6 T,/G ~ (20b)

The integral remaining in Eq. 20a is solved numerically for T: = 0.604
allowing the limits for S to reach 0.5 in tension and compression. Here G =
48.1 GPa was found from the initial torsional loading path AB. Eqs 20a,b
predict the component stress-strain curves shown in Figs 14a,b.

Fig. 14a shows that the theory reproduces the increase in shear strain
observed under branch BC. Fig. 14(b) shows the correct magnitude in the
accompanying compressive strain for path BC but the theory overestimates
hardening. The theory of isotropic hardening predicts that under the
reversed loading path CDE, yielding recommences at E. That is, path CDE is
elastic and a Bauschinger effect [18] is absent. The results provide some
evidence for this. In (a) there is little change to the shear strain and in
(b) the data falls about a line of gradient E(E/0o = 271.5). The unloading
branch EFG is also elastic since the yield locus has expanded to contain
points C and E (inset). Though point G is unstressed it has two plastic
strain components remaining from the path.
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Fig. 14 Axial and shear flow under a reversed loading path (25% SiC)
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6. RESIDUAL STRESSES

This section interprets the behaviour observed from the residual stress
present in the material. Internal stresses arise in quenching from the
solution treatment temperature of 505°C. They result from the difference in
the expansion coefficients between the matrix and particle (23.5 x 10-¢ and
4.5 x 10-6 K-! respectively). Since aa1 > asic, the matrix is left in tension
and the particle in compression [19]. The quenching induces inelastic
strain in the material around the particle so creating dislocations at the
interface. If the residual stress around regular shaped particles is
hydrostatic it is unlikly to affect flow stresses in tension and compression
significantly. However, the relative sense of residual deviators and the
applied system is likely to be crucial to the deformation behaviour of an
mmc. The dislocation field existing in the strained material was created
under tension. This field is thus more mobile under compression than under
tension. Figs 15a,b show that the matrix residuals at state R are identified
with partial unloading from within the plastic region of the matrix.
Superimposed upon R are the flow curves from subsequent tensile and
compressive loading.
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(a) (b)

Fig. 15 The residual stress-strain state in the matrix

Taking R as the datum of subsequent stressing shows that the yield
strengths, gyr and gy¢, are comparable. The loss of some elasticity under
tension (oy: < Y) is matched by a reduction in the reversed yield stress
from the Bauschinger effect [18]. With continued deformation in each
direction, the maximum ordinate will equalise about the stress-free origin,
0, of each diagram. The applied stress must be taken relative to R, when
the model predicts a slightly greater ultimate strength under compression
(Ouc> 0Out). Similarly, it may be assumed that the material strains by the same
amount in both directions relative to 0. Thus, relative to R, a greater
fracture strain will be observed from compression (€rc > €rt). The difference
in the fracture strains will depend upon how far R lies along the tensile
curve. In fact, much of the tensile ductility may be already be exhausted
from processing and treatment. In practice, even larger differences in
these fracture strains may arise through different failure modes operating.
For example, the present study shows that shear sliding in compression
and transgranular cracking in tension provide the fracture paths for
linking wvoids. Under these conditions Fig. 11 quantifies differences in
strength and ductility between each mode for a strain rate of 14 x 10-4 s-i.
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7. FRACTURE MECHANISM

7.1 Void Nucleation and Growth

The absence of decohesion in the tensile failures is due to a very high
bond strength, the latter being close to the strength of the particle (1.7
GPa). There was also an absence of tensile necking. SEM examinations
showed that damage was confined to a narrow band since few stable voids
existed beyond it. Thus, void nucleation is critical to the mechanism of
coalescence which leads to fracture. Voids do not exist already in the
matrix. In order for them to nucleate the stress levels must be high
enough to attain the energy levels required. Initially, much of the work of
deformation is absorbed in creating dislocations at the interface. The
internal stress field will continue to relax by the formation of secondary
dislocations. These dislocations pile up between particles until they become
effective barriers to their further motion. Barriers are also presented from
the neighbouring dislocation fields around closely-spaced particles. At this
point the local stress rises rapidly to nucleate voids in the matrix material
around particles with a dense distribution. The appearance of voids on the
fracture surface confirms that voids serve to propagate a crack in the
manner of the model given in Fig. 16.

T W |

(b) (c)
Fig. 16 Void nucleation and growth

This shows that: (a) voids first nucleate at the interface, (b) they then
grow under the applied strain to a critical size, when in (c), the matrix
fails- in a brittle manner. In fact, voids may coalesce instantaneously under
the opening stressses around their ends. Within this process the particle
size, spacing and distribution play an important role in characterising the
strength of an mmc.

7.2 Acoustic Emissions

Acoustic emissions depend upon the sudden changes in stress that
accompany fracture. Higher emissions would be expected from particle
fracture than from void formation {20]. The power spectral density, X(f),
was derived for tension and compression by amplifying the signal from a 0
- 2 MHz broad-band transducer then downloading to a computer. In both
tests no emissions were observed until failure at which point they were
captured in a 2 ps interval. Fig. 17 shows that the greatest emissions were
observed at low frequencies of f = 10-! MHz in compression. It is believed
that the higher emissions were due to friction between the 45° shearing
surfaces. Since no medium to high frequency spectra were observed this
implies little particle cracking. It is believed that the matrix material
absorbed any emission due to void coalescence. In tension a larger burst
accompanied failure consistent with rapid, simultaneous nucleation and
growth of voids.

27 =



[ T T T T T T T T T
i
X (f) % !
V/Hz r/\ WWWW{W MM'“\'WWV‘L" i W‘J
0" f : , , l | l , = M r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 6 1.8 2

i
f/MHz x10°

Fig. 17 Acoustic emissions accompanying compressive failure

7.3 Damage Parameter

Let us assume that damage is stress induced and that wrepresents the
loss in load bearing area varing from 0 in undamaged material to 1 at
fracture [21]. This allows a damage derivative to be expressed in terms of
true section stress as:

dw/do = Bo* @1
where k and B are constants. Setting o¢,=0¢/(1 - @) in Eq. 21 leads to:
J. (1-wfdo=2B J. c¥do
(1-w)}*tk=1-Bo!t¥ (22a)

in which the constant of integration is found from @ = 0 when o= 0. At
fracture w = 1 and o= ou. Eq. 22 gives B= 1/(ou)!* ¥ so that:

(1 = w)1+k= s (O-/O.U)l+k
w=1 _[1 _(o./o.u)1+k]1/(1+k) (22b)

Eq. 22b shows that the damage varies from 0 in an unstressed condition to
unity when the ultimate stress is reached. For example, the inset diagram
in Fig. 12 reveals the damage accumulated when k = 2. Let us apply this to
the radial test. In the presence of damage the Hollomon law (Eq. 14) is
written as:

o=0(efle)" (23a)

This implies that damage alters the yield stress and strain but not the
hardening exponent. In the undamaged material assume that the same strain
will be reached under an increased stress:

ol(1- w)=c (efle)” (23b)
Dividing Eqs 23a,b:
(1-w)= (00‘/00)(80 feabhs (23c)
From Eqs 23a,c, H becomes:
H'=dolde?= (no_le )(1 - w)'"(a/c )1 (24)
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Comparing Eq. 24 with Eq. 14b, it follows that the two strain increments in
Egs 12a,b are modified to;

de’=[e, /n(1 - @)1 + 3R?) -2 §U-aVadS + o dS/E (25a)
dy'=[3Re, /n(1 - @)"")(1 + 3R} 22§ t1-m/2 4§+ 6, dT/G (25b)

where from Eq. 22b;
(1- @)= {1-[S(cg/0, )1+ 3R?)"}I+}ath (26)

in which S= 0/0, and R= t/a. Combining Eqs 25a,b with Eq. 2 and then
integrating each numerically provides the component stress-strain curves
(d) in Fig. 12 for the damaged 17% SiC material. Clearly, these are nearer
the observed behaviour where both the yield stress and fracture strains
are reduced by void damage. Void growth measurement in tension are
required to provide the k-value that fits the data more precisely.

8. CONCLUSIONS

The brittle tensile behaviour of an mmc is due to its notch sensitivity.
Inclusions and poor surface finish raise the stress locally to provide the
initiation site for a fracture with limited ductility. The fracture path is
aligned with the major principal plane. The crack path through the matrix
material consumes voids to link with pre-cracked particles. Upon reaching a
critical crack size a transgranular failure occurs in the remaining ligament.
Much of the void nucleation and growth occurs simultaneously at the
instant of fracture though some voids do nucleate earlier. Compressive
failures follow the plane of maximum shear by a similar void linkage
mechanism. The voids nucleate in greater numbers in regions of high
particle density. They form around particles in regions of dense, immobile
dislocations when the local internal strain attains the limiting value for the
matrix material. The stress levels required to yield and fracture the
material under tension and compression are similar but there is a marked
difference in their respective ductilities. The lower tensile strain shows
that much of the available matrix strain has already been exhausted by the
tensile residual strain arising from quenching.

The elements of the classical theory of plasticity apply to a particulate
mmc. These are: (i) a Mises initial yield locus and a plastic potential, (iii)
isotropic hardening and (iv) the normality rule. The absence of a
significant Bauschinger effect is due to limited plasticity in the presence of
residual stress. Deviations from the classical theory appear with the
apparent sensitivity of plastic flow to the sense of an axial stress. The
results indicate a modification to the classical theory to account for the
tensile damage that accompanies plasticity in an mmc. A Katchanov
parameter, normally used to express the loss in area due to brittle creep
damage, can also express the varying degrees of damage resulting from the
application of monotonic tension, compression and torsion alone and in
combination. The principle employed is to let the stress-strain curve for a
damaged material lie beneath that for undamaged material. Similar strains
are reached in the two materials when the stress level in undamaged
material is raised to a level that accounts for the loss in continuity o
within damaged material. Thus, a damaged material under an applied stress o
will strain by the same amount as an undamaged material under the
increased stress o/(1 - @).
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