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Abstract

For the double diaphragm forming process, laminate wrinkling is a major
failure mode for both thermoplastic and thermoset composites. In this paper, we
compare experimental observations on the wrinkling of aligned fiber thermoset
composites with theoretical scaling laws based on ideal kinematics. Differences
between the ideal predictions and actual results are explained in terms of deviations
from ideal kinematics. Differences between thermoplastic and thermoset composites
are discussed, and an empirical scaling law for the effect of part size on wrinkling is
given.

1. Introduction

The majority of parts manufactured from advanced composites are made by a
labor intensive hand lay-up process. A potentially more cost effective technique is
diaphragm forming, where the geometry of a given part is achieved in a single
forming step. In combination with automated tape lay-up and ply cutting
techniques, this process could offer a significant reduction in part costs when
compared with conventional techniques. In diaphragm forming, a laminated
prepreg preform is placed between elastic diaphragms and a vacuum is drawn to
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ensure that the diaphragms make effective contact with the composite. Deformatisi
to the tool geometry is achieved by the application of vacuum from beneath thi
tool, or by pressure from above, or a combination of both. The process is show:

schematically in Figure 1.

Although diaphragm forming techniques were first applied to thermopla:t
matrix composites in the 1970's, recent efforts have been directed towut:
implementation of the process utilizing thermoset systems. Currently, diaphrigi
formed parts using thermoset composites are in production on Boeing's 7
Thermoset systems possess several advantages over thermoplastics, including lowsi
fabrication temperatures and pressures, and in some cases, lower material co |
Diaphragm materials used with thermoplastics are typically superplastic aluminus
alloys or high temperature polymers, whereas high elongation rubbers can be i

with thermosets.

The conformance of aligned fiber composites to complex geometrics
achieved by various viscous shearing mechanisms. Two important shear modes ai
longitudinal in-plane shear, where adjacent fibers slide past one another, an
interply shear where plies slide relative to each other. These modes are shown
Figure 2. Some degree of transverse shearing and longitudinal through-th
thickness shearing within a ply is also necessary to form ideal parts.

The major failure modes during forming are; 1) thickness variations, 2) !
plane buckling, where failure occurs on the scale of the fibers or tows, and, the toj
of this paper, 3) laminate wrinkling, where compressive forces induced durin
forming cause a gross buckling deformation through the entire thickness of th
laminate (see Figure 3). These compresive forces arise from the significant matei
compression necessary to form many doubly curved shapes. A simple kinemat
argument can be used to illustrate the compressive deformation. For é)Zampl-
Figure 4 shows the preform for a (0/90) laminate used to form a hemisphere. |

order to achieve the final part shape, the circumference of the preform nius

compress to that of the base of the hemisphere. For a circular preform, for examjil:
this requires an ideal circumferential compressive strain of -0.36. This strain nu
be accommodated by the shearing mechanisms mentioned above, and thus &
associated compressive forces would be expected to scale with these sheaiiy
stresses. An important simplifying assumption is that in-plane strains lead to
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plane stresses which in turn lead to the in-plane compressive forces. By this
reasoning, the through-the-thickness shears, I'y3 and T'y5, are of only secondary

importance to this failure mode.

o~

2 Scaling Laws for Ideal Composites

In this study, the required ideal shear patterns are determined priori from
the part shape by differential geometry theory. With some knowledge of the shear
strain mapping and the appropriate constitutive equations for the material
deformation behavior, it is then possible to estimate the magnitude of the stresses
induced in the composite during forming. This information, in combination with
the stiffness properties of the diaphragm and the composite's inherent resistance to

buckling, then forms the basis of the wrinkling scaling laws which are presented
here.

The critical condition that leads to laminate wrinkling can be developed by
using an energy analysis [1]. Figure 5(a) shows a free body diagram for a simplified
composite laminate and constraining diaphragm during forming, and Figure 5(b)
shows the geometry of a buckled composite. The work of deformation AT is given
by;

2
Kepid 255 (1)
L
The strain energy AU of the system is,
AU =AU + AU® )

where the superscripts d & c represent the diaphragm and composite respectively.
The strain energy associated with stretching of the diaphragm is given by,

AUd =2Fp A 3)

and that required for bending of the composite is,
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AUC=I(I)‘M dsz 3 L. 4)
2EI 4E(t)I
The critical load P, for wrinkling occurs when AT = AU, which leads to
Py =2Fp + KE(zt)I
L ®)

Note that as t = o, E(t)—0 and hence P_, —2F

21  Scaling Laws for Compressive Forces

Based upon extensive tests as described in section 4.0, it was found that a

general constitutive equation for the composite shearing modes would include a
yield stress "To" and a power law shear rate behavior with exponent "n", and

coefficient "m". Hence the two principle contributors to the in-plane compressive

force can be scaled as,

F]2 & NphW(TO = ml";‘z (6)
and 3
Fy ~ NpLw(to +mI3) 7)

and are illustrated in Fig. 6. The labeling system corresponds to the material and

part coordinate systems shown in Fig. 7.

3. Ideal Kinematics

The shear strains required in egs. (6) and (7) can be estimated from ideal
kinematics, and the average strain rates can then be estimated by dividing by the
forming time. The calculation requires the "ideal" assumption that inter-fiber
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spacing and part thickness remains constant [2-4]. Here, we will outline the
calculation of I';p and T'g,, for two important part shapes; hemispheres and curved
C-channels. In general, the required strains for ideal composites can be calculated
directly only for relatively simple shapes. More complex shapes would require a
properly constructed CAD drawing [2-4]. Briefly, we will calculate I'1p and use the
implied displacements to calculate I's,. Hence I'12 and T3, are closely related.

To determine the in-plane shear I'12, consider the shear along a fiber element.
If a fiber slips a total distance "§" relative to its neighbor with inter-fiber spacing "h",
then the total shear for the fiber can be written as;

=8
2=y ©
This can be related to the geodesic curvature "Kg" of the fiber by [2, 3],
L
I'ip= JO Kg(s)ds (10)

LIS 1)

where the fiber is of length L, "s" is measured along the fiber, and we have ignored

any "d.c." component of the shear along the entire fiber.

Furthermore, the above integral can be related to the Gaussian (or double)
curvature "K" for the part surface over some region "R", enclosed by "M" smooth
curves "C;" with exterior angles "8;" (one of them representing the fiber of interest)

by the Gauss-Bonnett theorem. See [2,5].
M
Jokeds + [ [, Kda=2x-) o
i=1 (11)
Hence by using this result, the required shear can be determined from the part

shape (K) and the fiber orientation (8;). This procedure can be used to calculate the

required ideal shears for a variety of complex shapes [2].

AR Y
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3.1 Differential Geometry Results for Hemispheres and C-channels

Example 1: Hemisphere
(a) In-plane Shear

We wish to determine the in-plane shear for the fiber identified by the ideal
path C; in Figure 8. Here the arcs of the closed path C are as follows: C; is a semi
circle on a great circle; C3 is a semi circle representing the fiber path of interest; and
C, and C, are the connecting arcs that lie on a great circle. The geodesic curvature of
arcs C;, C, and C, are all zero. The line integral in the Gauss-Bonnet theorem thus

reduces to that of the fiber path C3. The exterior angles sum to 27, and since the

Gaussian or total curvature of the hemisphere is,

K= =
R (12)

the Gauss-Bonnet theorem thus reduces to,

0
—j'Kgds = KA = -Rl—z(ﬂRb) = msing. (13)
L

or
I'j2 = wsing (14)

(b) Interply Shear

Knowledge of the in-plane shear pattern for a given part geometry allows the
preform shape to be calculated. Figure 9 (a) shows the preform for a hemispifere
with an orthogonal grid. Referring to the co-ordinate system with origin at the
center of the preform, and considering a 0/90 laminate one can identify a series of
points on both the 0° and 90° plies that have the same (X,Y) co-ordinates. These
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points will move relative to one another after forming. Figure 9(b) shows the
location of the points A and B, after forming. The positions of these points after
forming are determined assuming that the individual plies achieve ideal in-plane
shear patterns. The relative movement of the points is given by,

M = BR (15)

where R is the radius of the hemisphere, and B is the azimuthal angle between the
points (Xy, Yq, Z;) and (X,, Y5, Z,). From the dot product of the vectors;

= il
B = cos 1[F(xlxz +y1y, + zlzz):l (16)
or
| - e . 2 Aot |
sin6; cos6, sin +sin6, cos6, sin 5
1 cos6, €0s6,

B=cos™ (17)

cos6; cos O, cos( 9 )cos( 5, )
cos6; cos6,

Fig. 10 shows the relative interply movement for a quadrant of a hemisphere.

The maximum occurs when X=Y=0.934R. At this location B =0.297. Therefore the
maximum relative interply movement M_ is given by;

My = 0.3R (18)

This represents a rather large displacement. For example for a 7.5 cm radius
hemisphere, the maximum interply movement necessary to form an ideal 0/90 part
is on the order of 2.25 cm. This movement is accommodated by the resin rich layer
that is found on the surface of most prepreg plies. The shear required is calculated

by dividing this relative movement by the thickness of the interply layer, which for
most materials is on the order of a few fiber diameters. This calculation yields a
value for shear that is on the order of 1,000 or roughly two or three orders of
magnitude larger than the in-plane shear.
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Example 2: Curved C-Channel

(a) In-plane Shear

Figure 11 shows the kind of c-channel we are concerned with in this work,
the two contours are arcs of concentric circles with radii R; and R,. Figure 11 shows
the inner flange of radius R;. Note that the geodesic curvature of the fiber paths is
not changed by unrolling the flange onto the flat. We consider the 0° plies where

the fibers run along the length of the c-channel i.e. in the x direction. The

appropriate ideal fiber mapping is the one where shear is not required on the top
face of the c-channel; all shearing occurs on the flanges. The tangent angle a on the
top is duplicated on the flange [3]. Therefore the shear at point P is simply the angle
enclosed by the arc, which is 0. We can obtain a more general expression for the
shear at any point on the flange by considering the geometry shown in Figure 13.

The distance between fibers fg and fp is,
A = Ry(1-cosa)

The distance lateral to the fibers is given by,

Then,

PA=S,-A=S5, - Ril-cosa)
and the co-ordinates of the point A are given by,
xp = xp +PAsina = Rje+[S, —Ry(1-cosa)]sina
ya = PAcosa = [S, —Ry(1-cosa)jcosar

The length of the fiber segment A -A is given by,

(19)

(20)

(21)

(22)
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e z\/@"; )2 +( ?’; )Zdoz. 23)

Therefore the shear at any location along the fiber on the inner flange can be related
to the fiber length by the expression,

lf = 2R1 sin F12 + (Sn = R] )rlz. (24:)
A similar analysis yields the following expression for the outer flange;
].f = 2R1 Sinrlz eh (Sn = Rl )Flz (25)

When Ry (or Rz) and s, are known, for any given fiber length we can calculate

the shear using Newton's iterative method. A useful result however, is that the

maximum shear required to form a c-channel is simply the angle of the enclosing
arc o.

Figure 14 shows an ideal fiber mapping for a 90° ply where in-plane shear is
allowed on the top face. This is consistent with some experimental observations for
large parts. From kinematics again the maximum in-plane shear required is simply
. To determine the interply shear, however we need to know the positions of all
fibers after forming. Referring to the co-ordinate system given, the parametric
equations describing the curve P-B are,

x =R, cos8, —R,(at; -6, )sin6,
y =R;sin6, +R,(a; -6, )cos 6, 26)
For the outer flange the equations for C-D are (see Figure 15),

u=Ry0, +Ry(sina, —sinb, )cosH,

(27)
v =Ry (sina, ~sind, )sinh,

YT T
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(b) Interply Shear

The fiber mapping for a 0/90 layup on the inner flange of a curved c-channel
is shown in Figure 16. The relative interply movements between the plies at point
A in the 0° and 90° fiber directions are denoted 8¢ & 89p. It can be shown that [6].

80 = lf = (Rloc + mma)
o %(R1 +s,)0 (28)

= lRlaa )
6

and

Sg0 =-1;—1(a+MJ +PAcosa -s, .
1

1 Ry+s

Fon g o’ (29)
1
2°n

o,

i

Hence the relative displacement between 0° and 90° plies at point A is:
(Bint)a = V33 + 8%
1o 32 1. 20
= (=Ra”)" +(=s,0
\f( 6 1 ) (2 Sn )

= %aZ\/R%ocz + 9s,21 .

For the outer flange, for a point where in-plane shear of a 0 degree fiber is a, a
similar analysis leads to the following result: -

Oint = %aw Rio? +9s2.

For the example of a curved c-channel that is 61 cm long and has an 244 cm inner
radius, the in-plane shear is approximately 0.125, while the maximum relative
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movement between the plies is on the order of 0.11 cm. Dividing the latter by a
typical interply spacing yields an interply shear value on the order of 50.

nnel
oint
. 4.0  Material Rheology L

The shearing behavior of the aligned graphite fiber /epoxy prepregs was
characterized by a three point bending test which produced a through-the-thickness
shear. By assuming the material is transversely isotropic, and by adding multiple
plies to add interply effects, one can measure the I'13 and I'12 material response
directly, and infer the I'y3 response [7,8]. The test configuration and typical results
for AS4/3501-6 prepreg tested at different rates of deformation are shown in Figure
17. The tests were carried out in an Instron 1125 mechanical test machine. All
results show a transient rise in stress followed by a steady state. The rise time was
on the order of 1 sec. for the slower cross-head speeds with a sample length of 5 cm.
(Note that in general the rise time depends upon the square of the sample length,
see [9]). The average strain rate dependence can be observed, for example, by plotting
the maximum force at steady state vs the maximum shear rate, as shown in Fig. 18.
These results show a power law rate dependence at low temperatures and high
shear rates, and a significant reduction in rate and temperature effects at high-
temperatures and/or low shear rates. Apparently, the material behavior is
dominated by the polymer in the former regime, and the fiber network in the later.
For example, time shifting the data shown in Fig. 18 shows a distinct deviation from
the WLF equation at high temperatures and low shear rates. From these results an
effective power law viscosity can be estimated for high rate and low temperature
regime, and an effective yield stress can be estimated in the high temperature
and/or low rate regime. The addition of multiple plies showed that the effective in-
plane viscosity and the inter-ply viscosity are comparable at low shear rates (within
10%). The apparent shear viscosity for the Hercules AS4/3501-6 for various
temperatures and cross-head speeds is shown in Figure 19. More details concerning
the rheology of these systems will be available in a forthcoming paper [8].
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5.0 Laminate Buckling Resistance

The forces that oppose wrinkling deformations originate from the inherent
resistance of the material itself and from the restraining force supplied by
diaphragm as it is stretched. The trends in the wrinkling data consistently suggest
that even without the support of a diaphragm, the composite material can resist
wrinkling to some extent. In an effort to evaluate this inherent wrinkling
resistance, a number of buckling tests on cross-plied samples were carried out. The
test geometry was based on an Euler buckling test column with fixed ends. Samples
were either 8 or 16 plies thick and the test direction was chosen to be that which was
weakest i.e. in the 45° direction on a [0/90] laminate and at 22.5° on a [0/90/%45]
layup. Samples were loaded instantaneously and were deemed to be wrinkled
when a lateral deflection of 6 mm was reached. Results of room temperature (22°C)
buckling tests are shown in Figure 20. The critical Euler buckling load for this test

geometry is given by;

_ 4n’E(D)
crit L2 (30)

e,

where,

I = moment of inertia
L = Length of column -~
E(t) = time dependent stiffness
of the composite material

The results show the clear time dependence to the buckling resistance of the
material. The effective stiffness of the laminates in the flat region of the curve is on

the order of ~7 MPa (103 psi).

To estimate the buckling resistance supplied by the diaphragm requires
estimation of the diaphragm tension transverse to the potential buckle as given in
eq. (5). This in turn can be estimated from a knowledge of the diaphragm strain
during forming, and its constitutive behavior. To determine the critical diaphragm

strains a grid pattern was printed on the diaphragm and the deformations measured
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after forming. For hemispheres the critical diaphragm strain is in the
circumferential direction, while for curved C-Channels, it is along the length of the
rent flange.

gest For the purposes of calculating diaphragm tension forces we designate the
st critical stress direction (transverse to the potential wrinkle) as 6;;. The generalized

expression for the stress in the 1 direction for biaxial tension of a rubber membrane
" The is given by [10];

ymples

ch was On= 2(%21 = ;\‘2112 ](?)_IU + }\.22 3TU)

5] "3 ' 7, (31)

ed

(22°C) where U is the strain energy function for an elastic solid. The invariant terms I; & I,

 test are given by; +

L=2A+A+A
I. = .l + _1- + i
) NON,OX
From conservation of volume,
Adads =1
Hence,
1 A
X B = o
L }\.213 A (32)

e is on where Ag and A correspond to the original and current cross sectional area of the
diaphragm. We can therefore write an expression for the nominal stress in the 1
direction as;

en in Gu' =21 A ‘-_1 (a—tj“"' }\'22 _aH)

in XX, \ oL dL. (33)

hragm
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A similar expression can be derived for the nominal stress in the 2 direction;

. 1 YoU ,,dU
=A N, — e | =+ A=
e (}‘2 731732](811 * ‘axz) 31

In biaxial testing A; & A, can be varied appropriately to fix the invariant terms

and the relevant partial derivatives of the strain energy function, U, can be
evaluated. For convenience we can rewrite Equation 33 as;

. 1 p
G = (7&1 ——5—2—)(14" —2)0'0
Where; -

oUu

= 9=

i ol

l _ dU / dl,

k oU /ol '

Rivlin and Saunders [11] determined the appropriate quantities for

vulcanized rubber They found that dU /dl is approximately constant and
independent of I; & I,. dU/dl, is independent of I; but is a linear function of I,.

1/k is thus a weak linear function of I, only. Thus from Rivlin and Saunders data;

% = 0.152 - 0.00368 x1I,

(36)

For uniaxial tension,

VA (37)

and Equation 35 can be rewritten,

, 1 1
= A —— 1 14+—
i ( 1 731)( +k%1)60 (38)
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Diaphragm Thickness (mm) 0.397  0.794 1.588  3.175

G, (kN/m?) 574 745 896 952

Table 1. o, for different thickness diaphragms, from uniaxial test data.

terms

We can now fit Equation 38 to uniaxial test data for the different thicknesses
of silicone rubber diaphragms to determine the values of the the constant op- These
values are shown in Table 1. Agreement between the tests and the model is shown
in Figure 21.

Table 2 shows measured values for the extension ratios for formed
hemispheres of different sizes. It also shows the constants and invariants needed to
calculate 6,1* from Equation 38. Note that A; is circumferential extension close to
the edge of the part and A, is measureed in the orthogonal direction at the same
location.

A, Az As I, Vk
Hemisphere R=5.1 cm 1.03 2.25 0.43 6.48 0.13
I,.
2 6.4 cm 1.04 2.50 038  7.87 0:12
lata; '
8.9 cm 1.17 2.85 0.31 11.54 0.11
11.4 cm 1.29 3.10 0.25 16.60 0.09
C-Channel L=30.5cm 1.22 2.25 0.36 8.40 0.12
61.0 cm 1.02 142 0.69 3.55 0.14
121.9 cm 1.09 1.68 0.55 4.55 0.14

Table 2. Extension ratios and material constants for the deformation of silicone
rubber diaphragm material over hemispheres of different sizes.

B T A |
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The diaphragm tension force is then simply;
Fp = Dwoy, (39)

where D is the undeformed thickness of the diaphragm, and w is the width.

s
6 Order of Magnitude Analysis
In this section, we will employ an order-of-magnitude analysis to estimate the
relative importance of F12 vs F3y, and 2Fp vs. the buckling resistance of the
composite. - S
Consider an element of the buckled laminate, as shown in Figure 22. L is the
specific length of a wrinkled region (in the critical direction which is perpendicular
to the wrinkle); w is the width of the region (parallel to the wrinkle). Both of these
dimensions scale with the size of the part. The number of plies is Np, and the
thickness of each ply is H.
W
Then, the ratio of inter-ply and in-plane viscous shear forces can be estimated
by: E
Fys NpLwmll; L%, L (F_v; )“ (1)
Fi; NpHwmlI7, HIY, H\TIp 7.
We know that:
H~1073 cm,
E - 102 to 3/ ZJ
1 '
n~0to0.45 F
p
For a part of dimension L ~ 10° cm., this leads to be

16
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Boay LiTys| nabl 2 to 3\0 045 3 4
L =0 2 -{10 ~10° to 10>. 41
Fy, H(r12 1073 ( ) £

-

Hence, according to this analysis, the interply viscous shear stress is the main

source of compressive force within a laminate.

The relative magnitude of the two resistance forces is approximated by:

Fp __ 12Dwoyl®> _ 3Doj,I?
F elastic 4ﬂ2E(t)WN;H3 RZE(’()N;HB' ’

(42)

Since
D ~1072 cm,
611 ~ 10° Pa,
2l cm?‘,
E(t) ~ 10° Pa, (room temperature)
N, ~10° to 10,

H® ~107% em?,

Fp

Il elastic

we get ~10! to 10%. (43)

Hence, diaphragm tension provides the main support against laminate wrinkling

7. Forming Experiments

To demonstrate the general validity of these scaling laws a series of
experiments were conducted, and then each point was plotted in terms of the
diaphragm tension Fp and the relative compressive force Fys. This is shown in
Figure 23 for a series of [0/90] hemispheres. The range of forming and part
parameters is given in Table 3 [6]. As can be seen, a relatively clear demarcation
between "good" and "wrinkled" parts exists. Detailed observations on these parts

17
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Variable Lower Limit Upper Limit
Temperature 20°C 95°C

Forming Time 1.5 min. 4 hrs
Diaphragm Thickness 0.04 cm 0.159 cm
Diaphragm Strain 1.03 1.3 &
Number of Plies 2 32

Radius 0.97 cm 11.5cm

Table 3 Parameter ranges for experiments on hemispheres.

revealed, however, that the shear patterns deviated from ideal. For example, the
total fiber shears for a series of hemispheres of different sizes is shown in Figure 24.
The basic trend is that the fibers follow the ideal shear up to about half way down
the side of the part. Toward the edge, the fibers deviate substantially from the ideal
Furthermore, there is a clear size effect; larger parts obtain larger shears. Since, the
fibers for Sn > Sn,max > 0.5 are all shorter than the central fibers the two effects are

related.

In a separate set of experiments, a series of curved C-channels with the range
of parameters listed in Table 4 were formed [6]. In this case, the preform was
constructed with [0/90/+45] ply orientations. This arrangement is substantially
more difficult to form than the [0/90] or [£45] arrangements with the same number
of plies. The reason for this is related to the additional constraints imposed by the
[0/90/+45]. That is, the [0/90] and [#45] arrangements can deform by a trellising type
of deformation which substantially reduces the required interply shear.” However,
for the [0/90/+45] lay-up this ability to avoid large interply displacements is severely
restricted. As a consequence the in-plane compressive force appears to increase by
about an order of magnitude. Evidence of interply shear for a [0/90/+45] C-channel
and the lack of it for a [0/90] is shown in Figure 25.

* In fact, the fiber path deviations from ideality which we noted in an earlier paper [3] for [0/90]
hemispheres, turn out to almost exactly equal to the required interply displacement given by eq. (18).
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Variable Lower Limit Upper Limit
Temperature 20°C 95°C
Forming Time 1.5 min. 1hr
Diaphragm Thickness 0.04 cm 0.159 cm
Diaphragm Strain 1.05 1.8
Number of Plies 2 32
Length 30.5 cm 121.9 cm
Web Width 5.1 cm 20.3 cm
ﬁange Length 5.1cm 20.3 cm

Table 4 Farameter ranges for experiments on c-channels.

This data is shown in Figure 26. Again a clear organization between good and
wrinkled parts is apparent. In this case, however, all of the parts are of the same
size. When larger C-channels (scaled up by a factor of 2 in every dimension, but
with the same enclosed angle 20.) where formed they did not superimpose on Figure
26. In short, the larger C-channels were harder to make than the small ones by a
factor larger than that suggested by our previous scaling laws. This difference
appears to be due to a shift in the shear patterns for the small and large parts as
shown in Figure 27. For small parts significant shear in the web is allowed, whereas
for the large parts all of the shear occurs in the flanges. The pattern for the large C-
channel is similar to the ideal shear shown in the figure, but at a reduced level. The
large part data can be superimposed if Equation 18 is multiplied by an additional
empirical length scale as given in Equation 44. A new plot using the empirical
length scale for both large and small C-channels is shown in Figure 28.

2
FV3 = LNpLW(TO + mr33 )(L L J (44)

char
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8 Thermoplastic Versus Thermoset Diaphragm Forming

Although similar in their basic deformation mechanics, differences in
rheology, diaphragm tension, and forming cycle create different failure trends for
thermoplastic vs thermoset diaphragm formed composites. For example, while
it has been observed that diaphragm formed thermoplastic composites can suffer
thickness changes on the order of 17 to 200% [12], generally the variation in
thermoset parts is less. For example, some thickness data for thermoset
hemispheres and curved C-channels is given in Figs. 29 and 30. These show a
variation on the order of +5-7% before and after autoclave cure. Such variation is
typical of parts produced on one sided tooling. The large thickness changes for
thermoplastic parts are due primarily to higher diaphragm stiffnesses, which require
significantly higher forming pressures to make complex parts. This is shown in
Figure 31, where, using the results of Mallon [12,13], the stress/extension ratio
behavior of two diaphragms used in thermoplastic forming are compared with a
diaphragm used in thermoset forming. As a consequence, to form thermoplastic
parts, pressures on the order of 0.1 to 1.7 MPa are used versus vacuum only (0:1
MPa) for thermosets. These differeences in pressures also lead to substancially
simpler equipment for thermoset forming. It should be noted, however, that the
stiffer diaphragms used with thermoplastics can aid significantly in reducing
wrinkling of the part. This can lead to an advantage when forming parts of
significant double curvature. Nevertheless, the diaphragm process used with
thermosets can produce a wide range of complex shaped parts. Some of these are
shown in Figure 32. Furthermore, by selectively adding stiffening reinforcements to
the diaphragm, the range of part size and shape can be significantly extended
without inducing excessive thickness changes [14].

9 Summary and Conclusions

This paper outlines the basic issues which control laminate wrinkling during
the diaphragm forming process. Scaling laws based on the assumption of ideal
kinematics show good general agreement with the experiments under limited part
size variation. Furthermore deviation from the scaling laws can be traced to trends
observed in deformation kinematics. In particular, a significant part size effect on
the resulting kinematics is observed, and an empirical scaling law for this effect is

proposed.
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Figure1 Schematic representation of the diaphragm forming process.
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—— ' Inter-ply
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Figure 2 Schematic illustrations of the in-plane and inter-ply shear modes for
aligned fiber, cross-plied composites.
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10 cm

(a)

(c)

Figure 3 (a) Illustration of laminate wrinkling on a 16 ply 0/90 hemisphere,
(b) the same hemisphere formed without wrinkles and, (c) laminate
wrinkling on a C-channel.

So

AS=S4Sg

Figure 4 Illustration of the compressive deformation AS required to form
a hemisphere.
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‘ Figure 5 (a) Element of composite and material before forming, and (b) the
same element after deformation.

Figure 6 Relevant dimensions used to devlop scaling laws for in plane and
interply shear forces.
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Figure 7  Illustration of the material co-ordinate system, 1, 2,3, and part co-
ordinate system, [, v, {.

Figure 8 Illustration of fiber paths on a hemisphere.
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Figure 9 (a) Preform shape for a 0/90 hemisphere, and (b) quadrant of formed part
showing the relative motion of points A & B.
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Figure 10 Plot of interply displacement on one quadrant of a hemisphere.
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’LC

R2

Figure 11 Dimensions of curved c-channel.

O P(x=aR1)

Unrolled Flange

Inner Flange-Top View

Figure 12 Illustration of a fiber path that passes along both the top and the inner
flange of a curved c-channel.
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Figure 13 Parameters used to determine the shear along a fiber segment, A-A_, on

the inner flange of a curved c-channel.

X o O O

Figure 14 Top view of a c-channel 90° mapping.
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Figure 15 C-channel 90° mapping: outer flange .

Figure 16 Illustration of inter-ply displacement at point A on the inner flange
of c-channel.
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Figure 17 Drape test data for AS/3501-6 graphite/epoxy material tested at different
deflection rates.
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Figure 18 Strain rate dependance of maximum load for drape testing of AS/3501-6
graphite/epoxy material tested at different temperatures.
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Figure 19 Drape test data for AS/3501-6 material.
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Figure 20 Buckling data for AS4/3501-6 prepreg material.
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Figure 21 Simulation of uniaxial tensile response of diaphragm rubber.
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Figure 22 Illustration of an element in wrinkled region.
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Figure 23 Forming limit diagram based on a simple viscous model
for (0°/90°) hemispheres.
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Figure 24 Comparison of ideal fiber and actual fiber shears for (0/90) hemispheres.
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Figure 25 Comparison of the interply shear occurring at the edge of (a) a (0/90/+45)
and (b) a (0/90) c-channel. |
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Figure 26 Forming limit diagram for (0/90/+45) 30.5 cm long c-channels.
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Figure 27 Comparison of ideal fiber and actual fiber shears for c-channels and

hemispheres
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Figure 28 Forming limit diagram for c-channels of two different sizes, plotted
using the empirical length scale correction given in Equation 44.
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Figure 29 Thickness variation measured around the base of a 0/90 hemisphere.
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Figure 30 Thickness variation measured around the base of two different size
(0/90+45) c-channels; (a) wrinkled patts and (b) parts formed without

wrinkles.
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Figure 31 Comparison of biaxial stress curves for diaphragms used with
thermoplastic matrix composites (Upilex-R and Upilex S) and the

silicone rubber used with thermosets.
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Figure 32 Thermoset matrix parts made by the diaphragm forming process; (a)
chassis for a radio controlled model car, (b) scale model automotive body

and (¢) roller blade.
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