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Bending of Fibre Reinforced Thermoplastic
Sheets

T A Martin, D Bhattacharyya and I F Collins
School of Engineering, University of Auckland, New Zealand

ABSTRACT
When forming continuous fibre reinforced thermoplastic (CFRT) sheets into 3-D components,
wterply shearing may be necessary in order to accommodate the out-of plane bending because the
libres severely constrain the deformation along the fibre directions within their planes. Furthermore,
lhermoforming takes place at elevated temperatures so that the molten matrix polymer becomes fluid.
Ihese two factors are of prime importance in analysing any forming process with thermoplastic
\omposite materials. This paper examines the process of forming unidirectional PLYTRON® (a
\lass-fibre reinforced polypropylene composite, originally developed by ICI, UK) sheets into V-
lends at a constant elevated temperature, and compares the experimental results with those predicted
ly an analytical model for plane strain bending of an incompressible Newtonian fluid reinforced with
| single family of inextensible fibres. The shape of a strip as it is formed, the effects of temperature
ind forming speed on the forming loads are also investigated. A major conclusion from this study is
Jiat PLYTRON sheets demonstrate a visco-elastic response when formed within their melting range
nd the degree of elasticity is increased by reducing the temperature, which, in turn, can reduce the
ibre instability. The theoretical model provides useful results for evaluating the effects of forming
eed and punch geometry on the bending stresses in such sheets and also highlights the limitations

\fa Newtonian fluid model in comparison with the actual material response.

Keywords: vee bending, continuous fibre reinforced thermoplastic sheets, visco-elastic,
kinematic model, admissible stress field
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1 Introduction develop
straightf
In any forming operation, where a flat sheet is to be transformed into a 3-D component, ol S
of-plane bending is inevitable. However, in many cases the principal surface curvatures ‘i —
small except in some localised regions. Consequently, most sheet metal forming operations i
often treated as in-plane stretching processes, while out-of-plane shear deformations i
largely ignored for simplicity of analysis. In regions of severe bending, the circumferent 2 Dewv:
strain is assumed to vary linearly through the thickness of the sheet and the surface normal | Thermoy
taken as the third principal direction of strain. In the case of reinforced thermoplastics, wil within o
high loadings of continuous or long fibres, these assumptions are not valid. In fact, even hetafon
single-bend operation necessitates interply shear, unless the fibres are aligned with the ben fibres sd
axis, since the layers of fibres resist in-plane deformations along their lengths [1]. homoget
This paper examines the subject of forming CFRT composites into V-bends at elevate bel.ldi‘ng
temperatures in order to observe the deformation mechanisms in a relatively simple single-ax uAEL
bend. The three main objectives are: (a) to observe the shapes of some unidirectiony plane. T
PLYTRON strips as they are free formed under isothermal conditions in a three point bendin o t-he S
device, (b) to measure the experimental loads required to form the strips, and (c) to compart SUbJeCte.(
these results with an idealised beam bending model for an incompressible viscous flux o
reinforced with a single family of inextensible fibres. Several researchers have manufactured V Tnathema
bends using both cold and hot matched face dies in order to understand the practical problem: lnanﬂll)z ff:]

with forming such sections [2-4]. In Soll's paper [2], a model for bending a laminate of elasti
layers separated by thin viscous fluid layers is developed; however, no attempt is made (g
establish an analytical load/displacement relationship based on a theoretically derived strij 2.1 Con
deflection curve. One way to simplify the analysis of CFRT materials is to assume an idealise(

behaviour by imposing suitable kinematic constraints on a continuum model. A few autho: The ﬁrzt
have recently published theoretical solutions for bending fibre reinforced elastic, plastic and | ;Innl;(l):efo
linearly viscoelastic cantilever beams subjected to two kinematic constraints; fibre inextensibilty | = '
and incompressibility [5-7]. An earlier paper by Rogers and O'Neill [8] deals specifically with 4 ‘ ;:I(l)n 1guz.:a1
viscous fluid model using these constraints. In this paper, an idealised material model for an matf;aemal

incompressible viscous fluid reinforced with inextensible fibres is also utilised. In addition, a
plane strain constraint allows a purely kinematic approach to be taken for generating solutions
to forming problems. In simple cases kinematically admissible shapes may be readily
established and, provided the boundary conditions are satisfied, the solution is also statically |
admissible. When dealing with a viscous material the solution is time dependent and, for three
point bending, the boundary conditions change with time as the strip is drawn into the
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deformation zone. In spite of these difficulties, a theory for plane strain bending of a
unidirectional laminate has been developed which yields an analytical solution for small
deflections. A numerical solution for the complete forming of such a material could be
developed, but that approach has been left for a later date. The analytical model yields a
straightforward interpretation of the effects of forming speed and die geometry on the bending
stresses in a real sheet during forming, and provides an excellent basis for further work with a
non-linear viscoelastic material model.

2 Development of a Viscous Fluid Beam Bending Model

Thermoplastic polymers are known to exhibit viscous behaviour when formed at temperatures
within or above their melting ranges. The matrix material in a CFRT composite sheet may
therefore be idealised as an incompressible Newtonian fluid in its molten state. In addition, the
fibres severely limit deformations along their lengths and these can be treated as thin
homogeneously distributed inextensible cords. In the current section we consider plane strain
bending of an initially flat plate with
uniaxial fibre reinforcement in its
plane. The fibres lie perpendicular
to the bend axis when the sheet is
subjected to three point loading, as
shown in Figure 1. Many of the T T
mathematical derivations presented

Figure 1: Three point bending of an incompressible

in the following theoretical model I ;
inextensible beam.

can be found in Spencer's text [9].

2.1 Constraint Conditions and Kinematics

The first two considerations regarding this idealised material concern the kinematic constrains
imposed on any deformation by the assumptions of incompressibility and fibre inextensibility.
In the following analysis capital letters indicate vector quantities referred to the undeformed
configuration, whereas small letters indicate vector quantities referenced to the deformed state.
In a Cartesian reference frame the incompressibility constraint may be expressed

mathematically as

— =d;=0, or det

ox; | _
i "
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where x and X refer to the deformed and undeformed coordinate vectors of a material particl
respectively, v is the velocity vector, and dij is the rate of deformation tensor defined by

_1{9v; ov; 2)
dij_Z(ax +axi)

J
In a continuum, a family of fibres may be characterised by a field of unit tangent vectors. In the
reference configuration these may be represented by a unit vector field A(XR). The fib

direction at any particle is then the direction of A. Therefore, the trajectories of A represent the
fibres themselves and the components of A are denoted by Ag. During a deformation the fibre:
will be convected with the continbum and the same particles will lie on a given fibre at any
time, t. The new fibre paths may then be represented by the trajectories of a new unit vector
field a(XRg,t). Using these definitions the fibre inextensibility condition may be written as

av, ;
a-a'-—=aia’di'=0, or ——LApAs =1 3
i Jaxj e BXR aXS R ( )

Furthermore, the relationship between A and a on an inextensible fibre is expressed by

_ox )
a; = —8XR Agp

For a viscous fluid it is important to consider the time rate of change of a. By differentiating
the equation (4) with respect to time and keeping Xg constant, the material derivative, a;, is

also readily obtained.

: ov;

= a2 )
The only other constraint imposed on the deformation is that of plane strain. At this point it is
necessary to consider a series of n-lines, which represent orthogonal trajectories to the a-lines,
These lines are not material curves in general, because particles lying on a normal line before
deformation will not necessarily lie on the same normal line after deformation. Pipkin and
Rogers [10] have derived the theory for plane strain deformations of incompressible,
inextensible materials. In the present analysis a plate of uniform thickness is considered, in
which the fibres all lie in parallel surfaces in the plane of deformation. Two significant

kinematic results which follow from Pipkin and Rogers' analysis are summarised as follows.
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(a) If the a-lines are initially parallel, the n-lines must be initially straight and
must remain straight throughout any plane strain deformation. Thus, the
fibres remain in parallel surfaces.
(b) The normal distance between any two adjacent fibres must be constant at
all points along that pair. Therefore, the thickness of the sheet cannot change
during plane strain deformation.

These two requirements permit only simple shear deformations along the fibres and the amount
of shear is conveniently expressed by the change in angle between two adjacent fibres Consider
Figure 2(a, b), in which an initially flat plate is deformed by shear. Rigid body rotations and
translations are ignored. In the (x;,x5) plane, the A vector represents the undeformed fibres as
a family of A-curves and the N vector represents a family of curves normal to the A-curves.
These two families have the vector components

A =cos @ Ay =sin® A3=0
N; =-sin @ Ny =cos @ N3 =0 (6)

where @ represents the initial angle between the tangent fibre direction and the X axis.

Analogous a-curves and n-curves may also be defined in relation to the current configuration.
Their components are given by

a;=cos ¢ a, =sin ¢ az3=0
ny =-sin ¢ Ny =Cos ¢ n3=0 (7)

where ¢ represents the current angle between the tangent fibre direction and the x; axis.

Xo

e R ¥

\ \90
é X,

(@ (b)

= X1

Figure 2: (a) Undeformed element, (b) Element after deformation.
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The shear angle, v, may be expressed simply as

Y=0-®+B ®) and
where [ is a constant along each a-line. See Spencer [9] for full details. A constit
, ; ) . ¢ompone
If the fibres are embedded at one end, or a line of symmetry exists along which there i &
. ! . ) . N-ZEro
shear deformation, =0 for each fibre throughout the entire deformation. Since ® is a constur _"fm
the shear rate, Y, may be expressed in terms of ¢ as, Therefor¢
T=¢ )
This result is useful when establishing a constitutive relationship for a viscous material. 2.3 Con
2.2 Stress in a constrained material pLicpre
single fan
the consti
The next important step in this analysis involves the introduction of a stress tensor whidl by
divides the stress into two distinct parts. The total stress in a constrained material can Iy
thought of as the sum of a reaction stress, I'j, and an extra stress, S'ij.
and
Gij = —p'5ij = T'aiaj + S'ij (10)
where
’ ! : i B Ly g ; fibres. In
The reaction stress does no work in a deformation and the reactions p' and T', in (10), arisc .
] 4o y X : stbe a
a result of the incompressibility and fibre inextensibility constraints. These scalar terms must Iy o
determined by solving the equilibrium equations. However, the deviatoric stress tensor, §, Using eq
needs to be specified by an appropriate constitutive relationship. Equation (10) may Iy
rewritten so that S'; involves no normal stress component on surface elements normal to the §
direction or the n direction. The modified stress equation then takes the form
In this an
19 is the she
Cij =—p(8lj '—aiaj)'*‘Taiaj +SU ( )
where Sj satisfies the constraints 2.4 Stre.

Now, p represents the total pressure on elements normal to the n direction and T is the tot)
tension on elements normal to the fibre direction. If the material has reflectional symmetry i |
the x3 plane and the deformation is homogeneous, under plane strain conditions the only non
zero components of oy are

T
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Oap =—D(Oup —agap) + Tagag +Sqp (o,p=12)
and O33 =—p+S33 (13)

A constitutive relationship is required to define S33 and Sgg. If SpB is now resolved into
components referred to rectangular cartesian coordinates in the a and n directions, the only
non-zero term arising in the stress tensor is a shear stress, S, along the fibre direction.
Therefore

Sep =S(agng +ngag) (14)

2.3 Constitutive Equation

In the present analysis, the deformation of an incompressible Newtonian fluid reinforced with a
single family of inextensible fibres in the (x,X,) plane is considered. According to Rogers [11],
the constitutive relationship for a linear viscous fluid subjected to these two constraints is given

by

S(XB = zquaﬁ +2(]J’L _u'r)(aaaxdxﬁ + aBaKdKa)
and S33 =2prds, (15)

where | and p are the respective viscosities of the continuum along and transverse to the
fibres. In a plane strain deformation, v3=d33=0. Therefore, from (13), 633=-p. Hence, a stress
must be applied normal to the plane of deformation to maintain the plane strain condition.

Using equations (14) and (15) it may be shown that
S=aanpSes = 24250505 = Uy ¥ = Hid (16)

In this analysis the only material property which can be determined in the constitutive equation
is the shear viscosity, iy .

2.4 Stress Equilibrium

If body forces are ignored the equilibrium equations in two dimensions are

30ap _ (17)

0

oxg
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After substituting Ogp from (13) into (17) and resolving the two equations along the a and 1 Equation
directions, remembering that k, is the curvature along the a direction and k=0, we obtain

dT oS

ot S = ()
o on
and
and :32+(T+ )k +§=0 (18)
arl p a aé
where th
where 0/0E represents partial differentiation along a fibre line and d/0n represents partii S,(9), p,l
differentiation along a normal line. Using equation (18), T and p may be determined after § sheet, so
calculated from the deformation gradients. In a straight section k,;=0.
In curved sections it is 2.5 Plar
sometimes  convenient to
inroduce a  quasi-polar In plane ¢
coordinate system as shown
in Figure 3, where 1 is the The cons!
normal distance between a
given a-line and a reference
alive M=0) and ¢ is the
angle that the n-line makes
with a fixed direction ¢=0. :
. . - an
The governing differential Figure 3: Quasi-polar coordinate system
equations then become.
aT_ as 5 These twi
% on lead to Ge
and P N (19)
m P e
where 1(9,t) = r1(9,t)-n
. ] where v,,
We may also introduce some force resultants, S* and T*, which are defined as the resultan! and /€
shear and tensile forces per unit length in the k direction, acting across a normal line - theor,w

¢=constant:

Sk = }Sdﬂ and ok }Tdn (20) Also, usin
0 0
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Equations (19) can then be integrated to give

aT*

a(t) —‘S*:rlSl —r0S2
oS *
and =i % =-np; + Do @D

where the boundary shear traction and pressure are So(9), po(9) on 1 = 1y(9,t) = r,(¢,t)-a and
S,(), p,(9) on 1 = r,(¢,t). In this analysis there are no shear tractions on the surface of the

sheet, s0 S, = $,= 0 always, and all surface loads are applied on the surface 1o, SO P1=0.

2.5 Plane Strain Velocity Field

In plane strain we have vy = Vi(X1.X2), Vo = Vp(X1:X2) , v3=0

The constraint conditions (1) and (3) then become .

LATRNCAZY (22)

=0
dgx; 0x,

and cos? ¢-ai+ sm¢cos¢(i’!-+éy—2—J+ sin® q)ﬁaYl:O (23)

oxy ox,  ox 0%

These two equations are similar to those used for plane strain slip line theory in plasticity, and
lead to Geiringer's equations [12].

ov, 90 0 ov,

Glani bl = (24)
ot "ok on

+va—g%=0

where v,, vy denote the velocity components along the a-curves and n-curves respectively,
and 9/9&, 0/om represent differentiation with respect to the arc lengths along these curves. In
this theory, ¢ represents the angle between the fibre tangent direction and the x; axis.

Also, using equation (5), it may be shown that

¢=av“ +v a¢—£(%%‘+va)

(25)

o Gk 1
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2.6 Deformation of a flat plate

Consider a flat section, as shown in Figure 4, which carries no loads on its boundary surfis
The shear force is constant between the load supports; therefore, S* = P/2.

P
‘ + | Ta— =1l
= :
o —X S
A . _f £ T 1 A
P2 : . P2

Figure 4: Three point bending of a flat plate.

Because ¢ is constant along any normal line, d¢/on = 0. Therefore, from the second equatin
of (24), v, = f(§). In a straight section, 9¢/3& = ( and, using (25),

L_ovy (26)
o= % =£'(§)

So @ is constant through the thickness of the sheet and, from (20),

P
S*=jS dn=]uLd) dn=ay; ¢ = 27
0 0
P
Therefore, b=— (28)
2au

Thus, (I) is constant along the length of the straight section between the boundary loads. In this

region the fibres all rotate at the same rate and straight fibres remain straight.
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2.7 Kinematic Model for a V-bend

The following kinematic solution is proposed for the shape of the deformed region in a flat
strip subjected to three point bending. Because the bending is symmetrical about the punch, a
geometric construction for only one half of the deformed strip is shown in Figure 5. With
progressive deformation, fan regions grow beneath the nose of the punch and at the end
supports. The region between the punch and the support remains straight, and there is no shear
deformation outside of the load supports.

i
]
| B
i et b T
1
| 4G F
' : Ry {
w 2 - -
| [}
i\
__é'(b b2 N\
] ¢0
] IR

Figure 5: V-bend deformation model.

The half-strip of length L/2, shown in Figure 5, has been divided into four main sections: {;
represents the fibre length in the fan region at the inside radius of the punch, {; represents the
fibre length in the fan region at the outside radius of the support roller, {, represents the fibre
length in the straight section between these two fan regions and {, represents the fibre length
outside the support roller. From these definitions the following simple geometric expressions

may be written.

==+l 29)
= ORp (30)
{3 = ¢o(Ry + @) (31)
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The distance between the support roller and the punch, b, may be expressed as

b=Rp + Ry +a)sin ¢, +{pcos ¢, (32)
This sho
the straig
and the punch displacement, w, is given by this straig
W = (Rp + Ry + a)(1 - cos @) + [psin ¢, (33)
Equations (32) and (33) may be combined to eliminate {5 so that
In region
ion at
W= (Rp +Rp +2) (1 - 08 9) + {b - (Rp +Ry +2) sin 9} tan ¢ -
- : constant
17), the |
_bsing, - (R, + R, + a)(1 - cos &) (34) e
COS §g
This equation is differentiated with respect to time to express the punch velocity, W, in ter
of ¢, as
% Finally, in
¥, =0 t00
W= ¢0(b — :(:;q) e %J (35) work don
¢ on the the
Now consider section ABI in Figure 5. The normal and tangential velocities, v, and vy, are 2.8 Adni
Va=-W sin ¢ and Vp =-W cos ¢ The previ
| solution, 1
and, from (25), g =L ( A +Va)=0 (36) boundary
r{ do
In section
Hence, the rate of shear deformation beneath the punch nose is zero. This fan region simplj equations
moves downwards like a rigid body.
In region BCHI the strip remains straight and the shear strain rate, 7, is equal to the rate
rotation of the strip, d)o. Using equations (35) and (25),
and in secl

A
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oy c0s*dy _9v, (37)
V2 =W : =
b- (R, + R, + a)sing, &
32)
This shows that the shear rate changes as the punch depth increases, but does not vary along
the straight section. Consequently, vy, varies linearly along length {) and is zero at point H. In
this straight region d¢/d§ = 0 and, using equation (24),
) v, _ 0 which integrates to give Vo= -W sin ¢, (38)
I3
In region CDGH, v,= 0 everywhere. Equation (14) then implies that v,= -w sin ¢, in the fan
region above the support roller as well. Therefore, the tangential fibre velocity, v,, remains
constant in the straight section, BCHI, and in the fan region above the support roller. Using
) (17), the shear strain rate in CDGH may be expressed as
4
7 _YV, _Wsing (39)
*r  R,+7
/, in terms
Finally, in section DEFG, vp= 0, v4= -W sin ¢,, and 0¢/9 = 0, and equation (25) implies that
7, =0 too. The strip outside of the support roller is pulled inwards as a rigid body. There is no
5) work done in this section. Consequently, length {; may extend to infinity, since it has no effect
on the theoretical load required to form the V-bend.
V- are 2.8 Admissible Stress Fields
The previously kinematically admissible results automatically lead to an admissible stress field
solution, which admits stress discontinuities across a-lines and n-lines in order to satisfy the
6) boundary conditions.
j In sections DEFG and ABIJ, y=0, which means that S$;=S4=0. In section BCHI, from
on SIEE equations (20) and (37),
cos’d,
Y= |, v.dn= 1, av 40
1e rate of S 1 Mrdn=p Law[b - R, + R, + ajsin ¢, e

and in section CDGH, from equations (20) and (39),

B $Zz 09092020 @02zo0028——ww——
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*_y o dne [BLWSD® Tl - 41
S3—ZuLy,dn-ZRr+a_n dn_ln[1+R )ustmq)O (41)

r

Figure 6 shows the variation in the resultant shear force as a function of the arc length along &
a-line. Clearly, the resultant shear force is discontinuous across m-lines; BI, CH and DG. Tl
is possible, provided point loads are applied on the surface at points B, C, D, I, H, or G, witl
force magnitudes equal to the jump in shear stress across each line of discontinuity.

b

S*

L 2 Ls Ly

Figure 6: Resultant shear force along the length of the beam.

If we consider the equilibrium of element CDGH the total force acting on the support roll;
and the resultant normal force in the sheet can be calculated. Along the line EF there is u
applied traction, so T=0 there. As there is no deformation in the section outside of (I
supports, the normal force resultant remains zero up to line DG. Upon crossing line DG thei
is jump in shear stress equal to S*3;. This jump in shear stress is always positive and the roll
applies a reaction load at point G of magnitude S*3. If the roller is frictionless, using the fiis
equation of (21) and equation (41),

g a ™ . a I
% =S =In[l+R—r)ustm¢O =% U= ¢ln(1+R—r)ustm¢o (42)

Thus, the resultant force increases from zero at the free edge, DG, up to a maximum tensil
value, T*,, at ¢=¢,. The resultant shear and normal forces also give rise to a distributed log
on the surface of the roller, p,, which may be calculated from the second equation of (21).

are A | wsingy 43
po_r0_¢ln[l+Rr) E (43)
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This distributed load is also always positive and increases from zero at point G to a maximum
at H. Upon crossing line CH there is a jump in shear stress equal to S*3-S*,. As long as
S*3>5%*;, the roller provides a positive reaction force at point H equal to the jump in shear
stress there. In the straight section, BCHI, the shear force, S*5, and the normal force, 10
remain constant along length f,. Beneath the punch nose, in section ABIJ, y=0 and S*;=0; so,
there is a negative jump in shear stress across line BI. A reaction force of magnitude S*, must
therefore be applied by the punch at point B. If the punch is assumed to be frictionless, there is
no shear traction on the inside bend radius so that equations (21) and (36) lead to the following
result:.

L

dT
0

-0 and hence T* =T*, (44)

This normal force gives rise to a uniformly distributed load on the surface of the punch, p,.
From equation (21),

e T @s)

I, R, R, R,

The net downward load on the punch can now be determined from the resultant shear force,
S*,, and the resultant normal force, T*,, in the straight section of the beam,

P . .
5= S, cosd, + T sind,

i acos3¢0 a il
—uLw[[b "®, + R, + an %) + ¢y In (l + R,)Sln o (46)

The final point to consider involves the jump in shear stress across the a-lines on the upper and
lower surfaces of the strip. S may vary through the thickness of the sheet or it may be constant.
But, in order to satisfy the surface boundary conditions, S must drop to zero at the upper and
lower surfaces. The shear stress expression must, therefore, contain a Heaviside step function
of the form

SM{HM) - Hn - a)}
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and its first derivative will take the form 9S(n)

o —— {HM)-HM~2a)} + Sm){8(n) ~8(n—a)}

where 9§ is the delta function.

In section CDGH, using equation (39)

0S; _ -y W sin ¢, M w sin ¢,
= H H
I~ Rmp - HO—a)+ S T

{5(Tl) o(M-a)} (47)

Now r=-(R,+n) and substituting (47) into the first equation of (19) leads to

L= u?ql;wm)cb SR HO—HM~2)}-+ 1, 6w sing, (30D — 5(n—2)) ($8)

The stress in the sheet along the fibre direction increases from zero at line DG up to 1
maximum value at ¢=¢,,. It is infinite at both surfaces and is tensile within the sheet. The stresy
is tensile on the lower surface and on the upper surface it is compressive. A finite 1oad is
carried by the surface fibres, which have an infinitesimal thickness. Such a result i
characteristic for solutions involving inextensible fibres. In reality, most of the stress is carried
near the surface of the sheet during forming. This result is supported by Soll and Gutowski's

work [19] on bending of thermoplastic composite beams. The second equation of (19) can then
be used to solve for p.

UL‘DW sing, ’ a M dwsing, _ 2
(R, +M) '{1+ J ‘{1'*' R, ﬂ (R.+1) o (HMW-HMm-a)} (49)

In the straight section BCHI, S is constant through the thickness of the sheet; so, equation (37)
yields

cos’d,

— &M — 0
il (RP + R, + a)sin ¢, }S(n) gz} {0

L
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and using the first equation of (18) with k,=0 leads to

OS

c
T i i{b ®R, + R, + a)sm o }8(n)—8(n—a)}+T3m 2y

where the arc length, &, is measured from line Bl and

e E%Q{%‘;)& (H) — BN =)} + 1y 6w sindo {5 — 3(n - 2)) (52)

The stress inside the sheet remains tensile for the duration of forming. The surface stresses
reach their maximum values at line BI when £=0. The fibres are most likely to buckle on the
upper surface at the point where the strip leaves the nose of the punch. The pressure term, pp,
in this region can be calculated using the second equation of (18) with k, =()?

p, = constant =0 ' (53)
Under the punch nose the shear stress is zero and the first equation of (19) gives

T, = const = [t; wcosdo {d(M—dMm—a)}+T;__ (54)

Finally p; may be calculated in the region ABIJ with r=(Rp+a-n) and S=0.

b= %%f—:% ln(1+——}+uLw(cos¢0+¢0 51“¢o){H(n) H(m—a)} (55)

The pressure terms (p; and p3) normal to the a-lines are not constant through the thickness of
the sheet and they cause spreading in the transverse fibre direction unless a stress, 633=-p, is
applied to the strip. The plane strain condition is otherwise violated.
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3 Experimental Procedure The contt
control pi
In the course of this investigation, unidirectional preconsolidated PLYTRON sheets werc (4 lemperaty
into strips according to the dimensions shown in Figure 7. These were placed onto the holdi lemperatt
jig, which was subsequently positioned in the bending apparatus illustrated in Figure 8. Th Shside 1Rl
experimental setup was placed into an temperatt
environmental chamber so that the block. Th
forming could be carried out at a temperatu
constant elevated temperature. The Once the
strips were then free formed under temperatt
three point bending into curved board. In
sections at speeds ranging from 50- way in wi
500mm/min. The base of the forming
apparatus was mounted on the Instron -
crosshead so that it could be moved 4 Resu
upwards, thereby forcing the upper V- One of th
shaped die to form the PLYTRON . o ' . B s v
strips downwards, and the final Figure 7: Holding jig and composite strip. il
magnitude of deflection was kept
constant.
The upper die was attached to a SkN load cell and the forming loads were measured in relation
: to the displacement of the
Instron @ Load Cell crosshead. Small loads could
: measured accurately by setting the
S load cell to read 20N/volt. To
ensure thermal equilibrium during 4
3 3 test, at least 2hrs of heating was
3 $ required to heat up the large mass
E : : o of metal in the -environmental
chamber. The oven temperature
was controlled by an independent
- Gefran 1000 PID controller;
connected to a thermocouple placed Fi
inside the oven. Thus, the forming
temperature could be set and In the inil
Figure 8: Schematic diagram of the V-bend apparatus. maintained to within one degree central r¢
celcius. millimetre

The midd
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The controller had a self-tuning option, which allowed it to evaluate the differential/integral
control parameters such that the oven could be heated up without overshooting the preset

5 welg f'"? temperature. Another thermocouple placed on the metal block base measured the die
he holdiu temperature, as this was critical to avoid large amounts of radiation to/from the specimen
ire 8. The inside the oven. As soon as the whole apparatus had been pre-heated to the desired

temperature, the specimen was placed onto the forming jig and positioned in the lower die
block. The oven was then allowed to heat back to the pre-set 'temperature and the surface
temperature of the specimen was monitored until an equilibrium temperature had been reached.
Once the strip was ready to be formed, the cross-head was started and the specimen

1
: temperature, as well as the forming load, were recorded on a computer using an IBM ATOD
board. In addition, the shape of the deformed part was observed in order to understand the
>\ way in which the specimen behaved during deformation.
4 Results and Discussion
i One of the most notable features about free forming unidirectional PLYTRON sheets into V-
trip. bends was the consistent shape taken up by the strips as a result of the deformation. Figure 9
illustrates a typical section after complete forming and solidification.
in relation
of the
could be
etting the
/volt. To
1 during a
ating  was
Arge mass
ronmental
mperature
lependent
ontroller; ]
le placed Figure 9: Cross-section of a free formed V-bend. Forming speed = 100mm/min.
> forming
set and In the initial stages of the deformation, both ends outside the supports remained flat and the
e degree central region began to deflect into a triangular shape. This happened for only a few
millimetres of deflection before both ends of the strip began to lift up as it was drawn inwards.
The middle portion then acquired a curvature much greater than that of the upper die. As the

M=

ey
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sheet was pulled in between the supporting rollers, the ends continued to rotate and shear. Thi
result was unexpected in light of the theoretical bending model, since there was no shear for
acting on the sheet outside of the load supports. The degree of shear deformation outside (
the supports is indicated by the angle of slip between the fibre layers at both ends One possibl
explanation for this is that the fibre layers retained some elastic flexural rigidity which caust
them to deform by flexure rather than by shear. It is also worth noting that most of the shen
deformation occurred in the resin rich regions between the layers.

In all of the specimens, the greatest amount of transverse spreading occurred at the punc!

nose. An increase in strip width of approximately 10% was typical in this region. The viscou

beam bending model employed a plane strain constraint condition to simplify the analysis. Thi

assumption is valid only if a stress equal to the pressure, -p, is applied at the edges of the shee

to prevent transverse spreading. In practice there was no side force on the specimens durin
- forming, so the composite strips spread out in the transverse fibre direction.

Figure 10 shows the first set of experimental results for the load required to form a PLYTRO
strip at an elevated temperature and a constant speed. In this case the load is plotted again:
time so that the relaxation effects in the material may be seen.
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Figure 10: Graph of load against time for a PLYTRON V-bend.
Forming speed = 500mm/min, Temperature = 169.5°C.

The load rises from zero as the punch forces the strip downwards. This happens for a very
small amount of the deflection before the load reaches a maximum value and thereafter slowly
declines with increasing depth of penetration. The gradual decrease in load after reaching

peak value does not necessarily indicate a yield phenomenon in the material. It is more likely
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that the shear rate decreases with increasing punch depth so that the viscous stresses diminish.
In other words, it is a purely geometric effect. In this example, a load of only 5N was required
to completely form the sheet. This demonstrates the ease with which thermoplastic composites
may be moulded when they are soft. After about 2.5 seconds the crosshead was stopped. At
this point the load dropped almost instantaneously and then continued to decrease
asymptotically towards 2.5N. Such a result clearly indicates the degree of elasticity retained in
PLYTRON at 169.5°C. If the material were truly viscous, the load would have dropped to
zero as soon as the crosshead movement ceased. Instead, a considerable proportion of the load
still remained on the punch after it was halted. The asymptotic relaxation load reached after a
short period of time reflects the degree of elasticity retained by the polymer. The relaxation
curve teveals a viscoelastic material response. For a few specimens, which were taken out of
the forming apparatus before they had fully cooled, a noticeable amount of elastic recovery
occurred. The long term relaxation modulus of PLYTRON is not quantifiable from these
results, but it seems reasonable to describe the material as a viscoelastic fluid at temperatures

near the top of the polymer's melting range.
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Figure 11: Graph of load against punch displacement for PLYTRON V-bends.
Forming temperature = 168.5°C

Figure 11 shows a similar set of results for three identical specimens formed at different speeds
with the loads plotted against punch displacement. The shapes of these curves are self-similar
and follow the same rise and fall trend previously mentioned. For a Newtonian fluid, the loads
should be proportional to the forming speed. This is clearly not the case here. An increase in
forming speed from S0mm/min to 500mm/min results in a load increase of about 20%. In
addition, the load/displacement curve at 500mm/min differs slightly in shape from the other
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two. These findings indicate a shear thinning phenomenon; therefore, a non-linear viscoelast
characterisation of the material is needed.

Figure 12 provides a comparison with Figure 11 for two specimens formed at different spee
and at a slightly lower temperature. Again the results are repeatable; however, the low
forming temperature causes an increase in the forming load. The fact that PLYTRON:
rheological properties are strongly temperature dependent can be seen by comparing Figui
10, 11, and 12. Accurate temperature measurement is crucial when establishing PLYTRON
material properties in this temperature range.
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Figure 12: Graph of load against punch displacement for PLYTRON V-bends.
Forming temperature = 165.5°C
Using the physical dimensions of the forming apparatus and the given strip dimensions, somg
theoretical punch loads for an ideal viscous beam were calculated using equation (46) Three
load curves are illustrated in Figure 13 as a function of the punch displacement, w, for various
forming speeds. Because the beam model assumes a Newtonian fluid constitutive relationship
the punch load varies linearly with punch speed. A comparison of these loads, at the beginnin
of the deformation, with the experimental loads suggests that the longiiudinal viscosity of
PLYTRON at 170°C lies in the range of 6000-10000 Pa.s.
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Figure 13: Punch load versus displacement for an ideal beam.
Strip width = 40mm, b = 32.5mm, a = 4mm, Ry = 2mm, Rp=4mm, py =8000Pa.s
The punch load in Figure 13 tends towards infinity as the punch depth increases. This outcome
may be explained by studying Figure 14, which shows the resultant shear forces, S*7 and S*3,
from equations (40) and (41), as a function of punch displacement.
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Figure 14: Resultant shear forces as a function of punch displacement.
Strip width = 40mm, b = 32.5mm, a = 4mm, Ry = 2mm, Rp= 4mm, iy =8000Pa.s

After a displacement of only a few millimetres S*3 becomes greater than S*;. This implies a
negative jump in shear stress across line CH in Figure 5. Therefore, in order for the strip to
continue to deform in a similar mode, a point load must be applied at point C to force the strip
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to conform to the radius of the support roller. Since no force was applied there in practice, th
strip left the surface of the support roller at point C after about 4mm of deflection and the load
equation (46) then became invalid.

One further point should be mentioned in relation to the theoretical bending model developed
in section 2. Figure 15 shows the net fibre length in regions one and two of the strip as
function of punch displacement.
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Figure 15: Fibre arc length in regions one and two of an ideal beam.
b =32.5mm, Ry =4mm, Ry = 2mm, a = 4mm

Before the punch begins its descent, £1=0 and lr=b. As the beam is deflected, the fans in
regions 1 and 3 grow. In fact, fan region 3 grows at a faster rate than that at which the strip is
drawn into the dies. This is indicated by the decreasing fibre length, t1+o,

up to a punch depth
of about Smm. After this point in time, the sum, i1+Ho,

begins to increase as the fibres are
drawn through region 3 and into region 2. The shape that these fibres then acquire cannot be
analytically determined. Thus, a numerical solution is definitely required if the forming

. process
1s to be adequately modelled after this point.

5 Conclusions

Forming V-bends allows the interlaminar shear properties of CFRT sheets to be isolated and
studied. This forming mechanism is very important, when forming

‘ 3-D components, as the
individual fibre layers must shear relative to one another.
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ractice, th The degree of elasticity in PLYTRON laminates can be increased by reducing the forming
nd the loal temperature. The matrix then supplies more support to the fibres during forming and inhibits
fibre wrinkling. Transverse spreading often occurs in unidirectional laminates when they are
bent along an axis normal to the plane of the fibres. This deformation violates the plane strain
| de\{elopet assumption; however, the spreading is quite small. The loads needed to form V-bends from
DI unidirectional PLYTRON laminates at 170°C are small and these are not of prime importance
when designing tools for manufacturing CFRT products.

A model for predicting the behaviour of an idealised viscous beam has been developed, which
provides an analytical expression for the forming load as a function of the forming speed, the
die geometry and the sheet thickness. These factors all affect the stresses in CFRT materials as
they are deformed. The theoretical model does not exactly predict the load/displacement
response of PLYTRON laminates, but it does provide a reference frame within which to
interpret the experimental bending results. It also establishes a useful basis for further
theoretical work on kinematically constrained models, which render relatively simple solutions
to complex forming problems. The simple shear deformations between layers of fibres in CFRT
laminates are characterised particularly well by the bending model. Unfortunately an analytical
solution for large deflections has not been obtained. However, there is no reason why a
numerical solution cannot be generated by using the same fundamental assumptions about the

deformation.

PLYTRON laminates exhibit viscoelastic behaviour when stressed. Their mechanical response
is also highly non-linear in nature. By introducing an alternative constitutive relationship, a
more accurate beam model could be developed to take account of these peculiarities, which
would allow the material properties of the laminates to be determined from simple bend tests in

he fans in

he strip is the future.
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