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THE INFLUENCE OF FIBER ORIENTATION ON THE MECHANICAL
FLOW PROPERTIES OF A CHOPPED FIBER REINFORCED
THERMOPLASTIC COMPOSITE

P. THEVENIN and D. PERREUX
Laboratoire de Mécanique Appliquée R. Chaléat
Faculté des Sciences et des Techniques
Route de Gray
25030 Besancon CEDEX - France

Abstract. In this paper, the change of fiber orientation that occurs during the
molding flow of a composite material, based on a thermoplastic matrix
reinforced by chopped fibers, is investigated. The fiber orientation is
described by a distribution function which is divided in two elementary
distribution functions, each of which is concerned with part of the fibers. The
model presents the changes of these functions, taking into account the
interaction between all fibers and the transversal shear. The model agrees
with experimental data obtained in the flow of composites in plate type
geometry.

INTRODUCTION

Short fiber reinforced thermoplastics are usually processed by injection or
compression molding. The properties of such materials depend to a great extent on
fiber content, fiber length and fiber orientation. While the first two parameters are
mainly determined by the composition of the material, the latter is a function of the
local flow in the mold cavity. Fiber orientation, besides reinforcing the material,
causes considerable anisotropy with regard to a number of mechanical properties.

Some authors have already developed models to predict flow properties, such
as flow stress, for highly anisotropic fluids [1,2,3], fluid streamlines [4] and to reach
orientation distribution in complex geometries [5,6].

In this study, we have developed a model to predict fiber orientation before
being included in a previous model of anisotropic viscosity [7] in order to couple flow
fluid with fiber orientation changes through the flow molding process.

EXPERIMENTAL METHOD

The composite preforms (polypropylene, 30% fiber-glass) with unidirectional
fiber orientation (photo 1) are placed in a mold heated to 200°C (Fig. 1). This
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temperature is above the melting point but slightly below the degradation
temperature. During the flow, the temperature is constant at the mold surface, but a
temperature gradient is observed between this surface and the center of the sample
which makes it necessary to take into account the thermal exchange in the flow.

After compression, the plates are quickly cooled, with constant pressure, in order to
reduce the porosity [8.9].
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Fig. 1 - N%o]ding flow geometry with a transversal composite preform

Photo 1 - Micrography of a preform having unidirectional fiber orientation

The samples are cut from the center part of these plates, which makes it
possible to disregard the "end effect". Samples are taken at several points along the

axial direction (Fig. 2), in order to analyze the change of the fiber orientation with the
flow.
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Fig. 2 - Position of the samples used in micrographical experiments

For each sample, the faces perpendicular to the flow are prepared for SEM
observation.
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Measurement of fiber orientation in the sample is based on an analysis of the
ratio between the length of the axes of the ellipse produced by the sectional view of
the fibers. Each sample supplies about one thousand units of data, which makes it
possible to obtain a statistic distribution of the orientation at several points of the
plate.

Great care must be taken during this measurement stage. In particular, the
angle of the cut must be considered to minimize errors due to the small dimension of
the fiber perpendicular to the sectional view. Hine et al [10] and Yurgartis [11] have
already discussed the influence of the fiber angle and [12] also pointed out the
limitations due to the resolution when this angle becomes small.

ORIENTATION MODELING

¥ is the orientation function of the fibers which is defined for every material
point of the flow. ¥ must verify the normalization and the condition of symmetry:

2w

Je@yds =1 (1)
0
¥(6) = V(6 er) 2)

Taking into account a planar orientation of the fiber, only @ is useful to provide
the orientation of the fibers (Fig. 3).
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Fig. 3 - Orthonormal reference axis describing fiber orientation

The vector p lies in the same direction as the fibers. The flow is in the
direction &, without displacement in &, and consequently:

Y(+9) = ¥(9) (3)

A difficulty in the computation of fiber orientation arises because the center of
mass of each fiber moves with the bulk velocity field. This makes it possible to use
two different methods to calculate orientation. For either one, the material derivative
can be used to formulate an equation for the orientation at fixed points. Or, the
trajectories of individual fluid particles can be followed, integrating the fiber
orientation equations for the velocity gradients experienced by the particle.

In this study, to supply the change of the distribution the method which
consists in using material derivative is adopted in fixed points of a meshed surface
tied up to the material field at each poirit in time. The fiber density is assumed to be
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constant at each point of the plate. The conservation condition must be verified, by
the function ¥:

DY _  (¥9)
Dt 36 &

To provide the change in V¥, during compression molding, the equation (4)
must be complemented by the equation which describe the variation of 4. Jeffery [13]
first investigated the orientation behavior of a single rigid ellipsoidal particle
immersed in a Newtonian fluid.

For a fiber lying in the (¢,,8,) plane, the Jeffery's equation becomes:

2
6 = £e+ (-sin(@)cos(8) %-sin(ﬂ)2 M+cos(())2 %+sin(0)cos(0) ﬁ)
p

e+ 1 9 X X4 9%,
A oV av i av E av
-sin(f)cos(6) —1+cos(0)> —-sin(8)? 22 +sin()cos(g) 22

2 (-sin(f)cos(8) 3% (0) %, (6) o (0)cos(6) 5

(5)
)

The quantity r. is called the equivalent ellipsoidal axis ratio. For a cylindrical
fiber with a large aspect ratio, 1. becomes infinite. This model can be applied to a

low-concentration suspension of fibers in which one fiber is supposed to be free from
each of the others.

For a concentrated suspension, Folgar and Tucker [14] have proposed that
the angular velocity of the fibers can be approximated by:

) = -sin(f)cos() 0% sin(6)? ﬂ + cos(f)? A7
d X d X, ad (©6)
. av Cyav
+sin(8 ] 2 Y
sin(#)cos(6) 5 v 30

The extra term is used to describe the interaction between the fibers. C, is a
parameter, v is the scalar magnitude of the strain rate tensor. Combining equations
(4) and (6) gives:

2
D¥ _ L0k e ¥ (-sin(8)cos(8) V1 sin(92-2 V1 4+ cos(py? V2
Dt a6 a6 d X, d X, a % @
+sin(0)cos(8)2 V2 ]

X% |

Note that while equation (7) describes the behavior of fibers in a Newtonian
fluid, fibers suspended in a viscoelastic fiuid behave somewhat differently. What's
more, the last equation is valid only for homogeneous flows. However, it is a
reasonable approximation when the length scale over which velocity gradients
change is large compared to the fiber length.

For all distribution around a material point, the strain rate is assumed to be
constant.
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Using the tensorial notation introduced by Advani and Tucker [15] equation
(7) can be written:

% b 1 il vy .
dt 3 (wi 8 - ay wg) + 5 (T 8 + ay %) (8)
"Gt 2Cy (6; - 2 a;)
with:
. dv; . : s
fyij-:__l_-{-ﬂ and wij:ﬂ_iv_'
d X d X; d % d X;
27
[22] = 3 = [pp; ¥(6)do
0
27
[3,] = &y = IpPpep ¥ (6)do
Indeed, it is easier to express an average value of ay, noted % such as:
5-;; = (1-1) éijkl + fay (9)

where éijk, is a linear closure approximation exact for a completely random
distribution which has the form:

2 1
G = 'g(aijékl + 0,0y +6;06,) +

1
g(aij O +ay b +a; 6, +ay 6 +a

O +ay 0, )

and éijk, is a quadratic closure already uséd by Lipscomb [15]:
éijki = g ay

fis a generalization of Herman's orientation factor expressed as:
=2 g a; -1

This scalar measure of orientation is more accurate to build up the hybrid
approximation ay .

We next consider an initial distribution ¥ with a perfect uniaxial alignment of
the fibers in the e, direction. The integration result of equation (8) for a such
distribution gives a symmetrical distribution with only one maximum either over é, or
e, for sufficient time. However an analysis of the experimental results shows that the
resulting distribution has two maximums for each point of the flow (Fig. 4).
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¥ magnitude

6 =—m/2 6=0 6 = n/2

Fig. 4 - Cleavage of the initial distribution in two elementary statistic function

To take this result into account, the ¥ distribution is supposed to be the sum
of two terms ¥*and ¥~ given as:

¥* = 2% when ¢ E[O,%] U [74',3%] and O when ¢ E[%,’n‘} U [3%,211']
¥~ = 2% when 6 E[%,r] U [37f2,27r] and 0 when ¢ E[O,%] U [1,3%]

In tensorial expression it becomes:

where:

with: alesila,

Next, the equation of change will be applied only to the ¥* distribution and ¥
is obtained from the various symmetrical considerations.

TRANSVERSAL SHEAR CONTRIBUTION

Experimental results reveal a motion of both maximum of the ¥ distribution as
regard as the position in the flow. However the use of the equation of change (8)
with a Hele-Shaw model for the flow field is not accurate for describing this particular
orientation considering either a bidimensional or a tridimensional expression of the
orientation tensors. The next figure (Fig. 5) makes it possible to track the motion of

the ¥ maximum defined for ¢ [0, %] - Two photos also give a view of the

orientation at the constituents scale for two different positions in the molding plate. In
the following, it will be considered that the full angular velocity 6 can be written as a
sum of several terms corresponding to the various phenomena investigated as:
0 = y0, where 8, represents the Jeffery's equation
1
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Fig. 5 - Evolution of the experimental statistic distribution through the molding plate

Photo 3 - Micrography of a sample cut at 14 cm from the beginning of the mold

According to the initial distribution state and the mold-filling flow, the motion of
the fibers is supposed to be planar at every point in time. Fiber orientation is then
expressed in each finite element using a planar state and each element is supposed

to interact with the others through the transversal shear induced by the flow velocity
field.
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Let us consider an element subjected to a transversal shear rate 7,, including

only one fiber. The axis of the fiber is assumed to be the symmetrical center of the
relative shear rate as shown in Fig. 6

late P,% - B | ‘I
|
gt

Fig. 6 - Fiber orientation is influenced by shear rate 7,5

Then, the fiber is considered to be under a fluid drive moticn due to the shear

rate on its diameter. The resulting motion has the form of an incremental rotational
motion expressed as:

6, = - Cy cos(0)sin(8) |s] sign(4,) (10)
This term adds the following tensorial terms to equation (8):

dal 1

= 2 Cyy [n3| sign(41) (211 —ay111)
d T
_23_2 = -2Cy |713’ sign(y11) az211 (1)
da . 2oy
d—iz = Ci |3 sign(v11) (82221 —a1112)

INTERACTION BETWEEN FIBERS

For the particular flow considered here and especially regarding the initial
orientation distribution, the phenomenological coefficient modeling the randomizing
effect of interactions between particles introduced previously by Folgar and Tucker
In equation (6) seems not to be accurate to describe the behavior of the a,, term. So

another model using the active part of the strain rate tensor on the rotational fiber
motion is proposed:

| of
=l 93 = - C—' 9—\1,( - sin(f#)cos(9) ﬂ - sin(9)? _‘M
ed ¥ 96 a % 3%, 1)
g + cos(p)? V2 4 sin(6)cos(8) 22)
9 X4 3 X,
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With the flow field chosen, one gets using tensorial notation:

da |

hdt” = 4. C 1y (A —84410)

da ;

_dtg = 4G v @112 —2pm) (13)
da .

_d;_z = Ciyy(1-8 A1)

Combining equation (8) without an interaction parameter with equations (11) and
(13), the final constitutive relations for g; terms becomes:

da ) ] . . .

_dtL1 = M1 (81-34941) + 4 C, ¥y (Bpoy —a112) + 2 Gy |713, SIgN(y11) (244 -ay444)
da r . . NS

_EZQ =T824 Gy @12 —ax) - Cy |713' SIgN( 1) @x1q

da,, _

. A 3 ) .
Gt M (‘;"aﬁu) + Gy (1-8 ay1) + Cy ,713, Sign(¥11) (82001 -24112)

RESULTS AND DISCUSSION

The molding tests were performed with a constant compression velocity of 5
mm/s. A numerical solution was obtained for each elemerit of a meshed surface from
the previous equations of change. Then the &; terms obtained by an average value

for a given position were compared (Fig. 7) with simulate results for various points in
the final plate.
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Fig. 7 - Correlation of experimental results and simulation
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CONCLUSION

The behaviour of an anisotropic melt composite with any orientation
distribution has been investigated. The model which is proposed requires the use of
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