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ON SURFACE ENERGY EFFECTS
IN COMPOSITE IMPREGNATION AND CONSOLIDATION

Marco Connor, Staffan Toll and Jan-Anders E. Méanson*

Laboratoire de Technologie des Composites et Polymeres
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

Macroscopic capillary pressure and microscopic inter-particle forces due to
surface tension are examined. A general equation for the capillary pressure
during impregnation is derived and subsequently specialised to particular
processes. For fibre composites, the capillary pressure can be of the order of
+ 10# Pa, the sign depending on the contact angle between solid and liquid. Next,
the antractive and repulsive forces between particles connected by liquid droplets
are analysed by two different model geometries. At contact angles between /2
and 7, an equilibrium particle separation distance is obtained in the absence of
applied force. At lower contact angles, spontaneous impregnation can be
achieved. The effect of capillary action on impregnation rate may be significant
if applied pressures are small (e.g. filament winding) but negligible at applied
pressures greater than ~100 kPa (e.g. compression moulding). The topology and
concentration of voids may, however, be greatly influenced by surface energies.

, Figu
1 INTRODUCTION impr
the s
Composite impregnation and consolidation processes usually involve the flow of a
liquid matrix into an assembly of closely spaced particles of the order of 10 um size
(e.g. fibres). The liquid must flow through long and narrow channels and wet a large Figu
surface area of particles. In such conditions the surface energies of the various phases infilt
are likely to play an important role. Surface energy effects can be described on at least impr
two levels: the macroscopic level, where they appear as a capillary pressure, and the dispe
micromechanical level, where they appear as forces acting between individual particles. One
This paper addresses both. orde
Capillary pressure, P, is defined as teChf
matr
P = dE (1) likel
i av
Equa
where E is the total surface and interfacial energy in the volume V. The capillary fracti
pressure determines whether spontaneous impregnation can occur: if the total amount cases
of surface energy decreases upon impregnation the capillary pressure will be negative dropl
and impregnation (decrease of volume) will tend to be spontaneous; if the energy fibre;
increases, the system resists impregnation and impregnation will take place only under
externally applied pressure. 2
The capillary force between particles connected by a resin droplet is defined
similarly 2.1C
F = @. ) Cons
‘ da V], C

where a is the distance between the particles. The capillary forces between particles are
of course the microscale origin of the capillary pressure.
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Figure 1: Different impregnation situations: (a) advancing front (e.g. RTM); (b) radial
impregnation of a fibre bundle; (c¢) commingled fibres; and (d) liquid dispersed among
the solid particles (e.g. powder impregnation).

Figure 1 illustrates the most common impregnation or consolidation situations.
Figure la shows the case of resin transfer moulding (RTM), melt impregnation or
infiltration; Figure 1b shows radial impregnation of a fibre bundle [1]; Figure 1c shows
impregnation by commingled resin fibres [2]; and Figure 1d shows the case of a liquid
dispersed among the solid particles, e.g. consolidation of powder impregnated tows [3].
One can further distinguish low-pressure techniques, using applied pressures of the
order of 10° Pa, (e.g. vacuum bagging, filament winding) from higher-pressure
techniques using the order of 106-107 Pa, usually for high viscosity thermoplastic
matrices (e.g. autoclave forming, compression moulding). Capillary effects are more
likely to be significant when applied pressures are low.

In this paper, a general expression for the capillary pressure is derived based on
Equation (1), allowing for a completely general pore geometry and a solids volume
fraction that may vary during impregnation. Specialisation is then made to the various
cases in Figure 1. Next, the capillary forces between particles connected by liquid
droplets are examined by considering two different geometries: parallel square-section
fibres and parallel plates.

Z CAPILLARY PRESSURE

2.1 General theory
Consider a volume V divided into two types of subdomains: the impregnated volume,
V1, consisting of solid and liquid, and the unimpregnated volume V3, consisting of solid




523

and void, see Figure 1. Both solid and liquid are considered incompressible. Now mass
conservation of solid and fluid requires:

Vi=Vi(-¢;) (3)
Vi=V19, +V,0, 4)

where V and V; are the (constant) volumes of solid and liquid in V, respectively, and ¢;
and ¢2 are the solid volume fractions in V; and V,, respectively. This can be
rearranged to express V; and ¢; in terms of the total volume V and volume fraction ¢
only:

Vl(V, ¢2) b Vs +Vl = V¢2 (5)
1-¢,
Vv

4V 92)=1-3L .

If S; and S; are the surface area per unit volume of solid and liquid, respectively,
then the surface energy can be expressed as

E=S[oViYa+ 0:Va7s |+ SViy, (7)

where ¥, %, and ¥ are the surface energy per unit area of liquid, solid, and solid-liquid
interface, respectively. By introducing Equations 5 and 6 into (7), E can be written as a
function of V and ¢;:

1
E= (Vs + Vl)(SSYsl + SIYI) - ¢2 (Vs + VI)SS)/S +
1-¢, 1-9,
V
1 _¢;2 (SSYS oe SIYI - Ss}/sl) =5 VISSYS (8)

Allowing for ¢, (the solids volume fraction in the regions under impregnation) to
vary during impregnation, the capillary pressure according to Equation 1 can be
expressed as

p 9E_JE  JE do ©)
Cdv IV 9¢, dV

which, together with Equation 8, gives the final result:

(10)

d

P, =—y,(Ssc059+S,){lipfpz = Q ¢Z" )2 d‘i’;)
¢

where ¢, is the void volume fraction and 6 is the contact angle, related to the surface
energies through the Young Equation
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v,cos0=7,— vy, (11)
Equation 10 is the general result valid for all the processes under consideration here.

2.2 Fibre composites — examples

The specific impregnation processes illustrated in Figure 1 can be divided into two
classes: (i) processes where the impregnated and unimpregnated domains are separated
on a scale significantly larger than the inter-particle spacing (Figure la—c), and (ii)
processes where the liquid pools are dispersed among the particles in domains
comparable in size to the inter-particle spacing (Figure 1d). In the case of cylindrical
reinforcement (fibres) the specific surface area, Ss, 1s equal to 2 / Ry, where Ry is the
fibre radius. In both examples S; will be considered negligible compared to S.

(i) Full separation (e.g. RTM or melt impregnation). This comprises cases (a)
through (c) in Figure 1, where the impregnated and non-impregnated regions are fully
separated. In these cases the fibre volume fraction in the region under impregnation
(region 2) will be assumed to be constant. Thus d¢, / d¢ = 0, and Equation 10 can be
written as

Ry \1-¢,

This equation is identical to the result proposed by Ahn et al. [4] for resin transfer
moulding.

(it) Full dispersion (e.g. powder impregnation). Since the liquid phase is fully
dispersed among the solid particles, the fibre volume fraction is homogeneous, so
¢2= ¢, and d¢ / d¢ = 1. Equation 10 can thus be written as

2508 13)
Pc=—2n( ¢ )(1 ¢] cosf :
Rf 1-¢ ¢ Final

This is the same expression as proposed in [5] for powder impregnated composites. It
should be noted that our neglect of the free liquid surface restricts Equation 13 to the
final stages of an impregnation process. In order to capture the early stages it would be
necessary to model the free liquid surface area per unit volume of liquid S;, which
unlike S; is a function of V. This requires a more detailed description on the particle
level, and is thus left for the next section.

Equations 12 and 13 are plotted as a function of @2 in Figure 2 using parameters
typical of a fibre-resin system, i.e. ¥ = 4.0 x 102 Pa-m, 6 = 7/6, Rp=3.5 pm, and the
final fibre content, Ofinat = 0.65. In the fully separated case (Equation 12), the fibre
volume fraction does not vary during impregnation. The solid line therefore gives the
capillary pressure for all volume fractions. By contrast, in the fully dispersed case
(Equation 13), P, evolves during the impregnation of one system; this evolution
(dashed line) is determined by the fibre volume fraction at the fully consolidated state,
Pfinat, Where Equations 12 and 13 become equivalent.
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Figure 2: Capillary pressure as a function of the fibre volume fraction: the full
separation case correspond to Eq. 12 and the full dispersion one to Eq. 13.

3 CAPILLARY INTER-PARTICLE FORCES

We have seen that the macroscopic effects of surface energy can be evaluated based on
average geometrical quantities such as volume fractions and surface area per unit
volume of the various phases. An understanding of the capillary forces acting on the
micromechanical level requires, however, a detailed description of particle shape and
arrangement. Here we shall focus on the situation in Figure 1d, where the liquid is
dispersed as small droplets between the solid particles. This situation may arise in
thermoplastic powder impregnation, where the liquid droplets are formed by the
melting of powder grains, or in resin transfer moulding or melt impregnation, where
droplets may form by splitting of a flow front [6]. The liquid droplets will tend to adopt
a shape which minimises the surface energy. If a droplet makes contact with two or
more particles, it may either repel or attract the particles depending on the various
surface energies. A value of the particle spacing may also exist for which the capillary
force vanishes. This then corresponds to an equilibrium state to which the system tends
in the absence of applied pressure. Capturing this effect requires geometric modelling
of S; and is thus missed by our previous result (Equations 12 and 13), which neglects ;.
Here we shall merely illustrate the nature of the capillary microforces and show when
an equilibrium state exists. Many different geometries can be envisaged. Two have
been chosen here based on analytical and experimental feasibility: a droplet in contact
with, in the first case, two parallel square-section fibres, and, in the second case, two
parallel plates; the former has a simple analytical solution, whereas the latter requires a
numerical solution but can be experimentally realised.

3.1 Droplet in contact with two parallel square-section fibres

A good description, at the qualitative level, is afforded by the idealised geometry
depicted in Figure 3, where two cases are represented: 8 < /2 and 6 > 7/2. The contact
angle is of course bounded by 0 < 8 < r. To calculate the capillary inter-particle force,
the following assumptions are made: both liquid and solid are incompressible; the drop
volume, V, is constant, dV / da = 0; the contact angle, 6, is constant, d8/ da = 0; and the
curved liquid surface is cylindrical. The capillary force, F,, is taken positive when the
fibres are pulled together.
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(@8<n/2 (b)@>n/2

Figure 3: A liquid droplet bridging two parallel square section fibres: (a) 6 < 72, and
(b) 6> ml2.

Statically, the work, F . da, required to move the fibres a distance, da, apart is
equal to the variation of the surface energy, dE, of the system,

F cda =dE = YIdAI + }/sdAs + YSldASI (14)

Based on the geometry represented in Figure 3 the various surface area variations, dA,
can be related to the variation of distance, da, between the fibres as,

x_ g 15
dAI:Zb_(_Z__)da
cos @
and
I_¢
dASlz—dAS:[—2l;—+b((2 5 )-—taneﬂ-da (16
a cos” @

Introducing Equations 15 and 16 into Equation 14 and using the Young equation
(Equation 11) allows the capillary force, F, to be expressed as a function of the
distance between the two fibres, a, as,

an

Z-0
F.(a,0)= y{b(:Z )+bsin9+2-Y§-COSQJ
cos 6 a

which is plotted in Figure 4 for an angle, 6, smaller and greater than zero, respectively.
For angles smaller than /2, the force is always attractive (F.>0) and increases as the
fibres are pulled together. For angles greater than w/2, however, the fibres are first
driven closer together, until they reach an equilibrium distance, ap, at which point the

capillary force, F,, is zero. Any attempt to drive them closer would require the
application of an external force. ) _
The equilibrium distance, g, can be found by setting the force, F,, in Equation 17

s . . o . . *
to zero. This can be written as a dimensionless distance, ay = ag+/b/V as

o 2cos6 (18)
0 J26—m-sin26
which is defined for angles greater than 71/2 only, and is plotted in Figure 5.




527

2.0
0<m/2
= 1.0 |
=
© ’____——-—""
~ \
Ve
O>n/i2 7/
-1.0 — - -
0 1 2 0 R 4
a [pum]

Figure 4: Capillary force as a function of the distance between fibres (Eq. 17) with
vi=4.0xI102Pam, b =5 pm, V = 103 um3, 6 = 87.7%solid line), and 6 = 91.7%(dashed

line).
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Figure 5: Equilibrium distance, ag*, as a function of the contact angle (Eq. 18).

3.2 Droplet in contact with two parallel plates

The geometry depicted in Figure 6, an axisymmetric droplet of fluid generated by the
rotation of a circular arc, in contact with two parallel plates is relatively close to the
geometry shown in Figure 9, yet allowing a fairly simple derivation. Furthermore, it can
readily be reproduced experimentally. Following the same procedure as in section 3.1,
an expression for the force as a function of the distance between the two plates and the
contact angle can be derived from Equation 14:

dR 19
Fc(a,9)=27rylR+aé5+£tan9+—%—(9—£)—21? ——cos 6 S
da 2 2cos“ @ 2 da
2
R 1§ -50+4 o
where ZZE oy > V——Z
\[%s‘q’ ~ GOt a
with d=tan@+ (9 —27)
cos” @
and O= 12 + tan26 (6—2)—1
cos“ 6 cos“ @ 2, 3
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where R is the radius of the solid-liquid interfacial area (see Figure 6). Equation 19 is
plotted in Figure 7 for an angle 6 = 145°and compared to experimental data presented
in section 4 of this paper.
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Figure 7: Capillary force as a function of the distance between plates. The solid line is
obtained with Eq. 19, the circles are experimental data obtained by lowering (white)
then raising (black) the upper plate.
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Figure 8: Equilibrium distance, ap**, as a function of the contact angle . The solid line
is obtained by numerically solving F. = 0 in Eq. 19. The circles are experimental data.

It can be seen that the force is positive (attractive) when the plates are some distance
apart. As they are brought together the force falls, reaching zero at gy = 680 um, the
equilibrium condition, then becoming negative (repulsive). In order to obtain the
dimensionless equilibrium separation, ap**=ay-V-//3, as a function of the contact angls:,

\\\\\
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the force value in Equation 19 is put to zero and the resulting relationship is evaluated
numerically. The result is shown in Figure 8 and compared to experimental data. It can
be seen that, as found in section 3.1 for the square-section fibre geometry, for all
contact angle values lower than 7/2 the equilibrium plate separation distance 1s zero,
while for higher contact angles the equilibrium separation is finite and increases with
contact angle.

4 EXPERIMENTAL

In order to measure contact angles between the resin and the fibres and observe the
formation of resin bridges, fibres mixed with some polymer powder were heated above
the softening point (or melting point for semi-crystalline resins) for five minutes, then
cooled in air. Figure 9 shows SEM micrographs of polyamide 12 (PA12) and
poly(etherimide) (PEI) on glass fibres (GF) obtained at 220°C and 280°C, respectively.
It can be seen that the PA12 droplet forms an angle of 30° with the fibre surface,
whereas the PEI/glass system shows an angle of 105°. It was observed for the PA-12-
GF system (Figure 9a) that, as predicted by the analysis in section 3 for contact angles
smaller than 7/2, the droplet is spreading along the fibres, drawing them together. By
contrast, the PEI-GF system in Figure 9b shows a bridge which did not spread and
which is holding the fibres apart at an equilibrium distance. '

To test our capillary force analysis, the case of a drop in contact with two parallel
plates, examined in section 3.2, was realised experimentally. A mercury droplet was
brought into contact with two plates forming an angle, 6, with the liquid. Three
different plate materials were used: glass, brass, and PTFE plates producing contact
angles of 141°, 145° and 156°, respectively. The mercury drop and the lower plate were
placed on an electronic balance. The upper plate was put into contact with the droplet,
then lowered and successively raised with a micrometric screw. The magnitude of the
capillary force was directly read on the balance for different plate separations, a.
Figure 7 reports the values of the measured force as a function of distance, a, for a
contact angle of 145° (brass plate) and compares them to Equation 19. The equilibrium
distance ag** reported in Figure 8 for the different plate materials was obtained when
the force value read on the balance was zero.

(a) (s e

Figure 9: Molten resin droplet bridging glass fibres: (a) PAI2, 6 = 30°, and (b) PEI,
6=105°.
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5 DISCUSSION

The calculation of the capillary pressure, P, (Eq. 10, 12 and 13) allows the magnitude
of the surface energy effects to be directly compared to other processing parameters,
such as the mechanical pressure applied during manufacturing of fibre reinforced
laminates. Capillary pressure takes a value, for parameters typical of carbon fibre
reinforced composites, that can be of the order of +104 Pa (= 0.1 bar), enhancing
impregnation for small contact angles, and impeding it for large ones. Depending on the
mechanism of impregnation, Equation 10 can often be simplified. If the fibre bed is not
being compressed during impregnation, such as in RTM or low pressure melt
impregnation, the capillary pressure is constant during impregnation and proportional to
¢z / (1-¢2), where ¢ is the fibre volume fraction in the “dry” fibre bed (Equation 12). If,
on the other hand, impregnation is accompanied by a compression of the fibre bed, the
capillary pressure increases during impregnation (Equation 13).

A study at the microscopic level of the capillary forces acting between individual
particles elucidates the mechanisms responsible for the magnitude of the capillary
pressure. Figure 9 shows, for the case of powder impregnated fibres, how the surface
energy of the various phases of a composite dictates the geometry of the resin bridge
formed between adjacent fibres. The geometry can be characterised by the contact
angle, 6, at the interface. The analysis of the model geometries presented in section 3
shows that systems with contact angles smaller than 7t/2 undergo capillary forces that
enhance the melt impregnation —one can talk of spontaneous impregnation— whereas
they impede it in systems with greater angles. Figure 9a illustrates the spontaneous
impregnation undergone by a PA12-GF system; the four fibres on the left hand-side
have been pulled together under the effect of the capillary pressure only, no external
forces having been applied to the system. For angles greater than 7t/2, there is an
equilibrium distance, ay, between the fibres which corresponds to a minimum of the
energy of the system (see Figure 4b).

It must be noted that the analyses in sections 3.1 and 3.2 describe a simplified
situation with constant interfacial energies and contact angle, and simplified
geometries. In reality, interfacial phenomena are quite complex. The dynamic contact
angle differs from the equilibrium contact angle measured at rest, and will be different
whether the solid-liquid-air intersecting line advances or recedes. This explains the
existence of a hysteresis, in Figure 7, between the advancing and recedin g forces [7, 8].
Such considerations, however, lie beyond the scope of this work. The agreement
between the experimental values and the model, in Figures 7 and 8, is acceptable and
already affords a fair understanding of the effects of the surface energies in connection
with composite manufacturing.

The capillary pressure can have a significant influence on the impregnation
quality and rate in low pressure processes, such as bagging technique or filament
winding. Bascom et al. [9] observed that the void content in filament wound rings was
markedly reduced when resins showing small contact angles with the fibres were used.
In thermoplastic composites processing, however, mechanical pressures of the order of
10°-107 Pa are usually applied, such as in autoclave forming or compression moulding,
for instance. In this situation the driving force from surface energy effects will be small
compared to that arising from the externally applied pressure. This is not to imply that
surface energy effects are unimportant, however: in many systems a quantity of air may
be entrapped during wet-out, and this will remain in the part after processing. This may
affect the composite properties as studied by Kohn et al. [10] who measured a linear
inverse relation between the interlaminar shear strength and the microvoid content. The
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topology of any voids remaining in the composite will be critical to their effect on
mechanical properties, as illustrated schematically in Figure 10. As suggested by
Szymanski [11], under favourable wetting conditions the area of the solid/air interface
will be minimised and any entrapped void spaces will tend to coalesce in regions away
from the fibres, as shown in Figure 10a, so that the effect of such regions on load
transmission near to the fibre/matrix interface will be minimised. Under poor wetting
conditions, however, with a large contact angle there is no driving force for the system
to expel air and the void space will actually be concentrated adjacent to the surface of
the fibres, as shown in Figure 10b, where its effects on mechanical properties will be
greatest.

N £ A Y
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(a) (b)
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Figure 10: Schematic of the topology of the voids in a laminate as a function of the
contact angle, (a) 6 < 12 and (b) 0> 7/2.

6 CONCLUSION

A general expression was derived for the capillary pressure during impregnation of a
porous solid by a liquid. For impregnation of a fibre bed by a resin, the magnitude of
the capillary pressure can be of the order of £104 Pa, the sign of which depends on the
value of the contact angle. In the case of small contact angles, the melt will wick
through the pores of the solid, giving rise to spontaneous impregnation, whereas for
angles larger than 7/2, the sign of the capillary pressure changes and impregnation of
the porous solid will be impeded by surface energy effects.

Microscopic inter-particle capillary forces were analysed for two different
geometries. The case of two parallel flat solid surfaces bridged by a liquid drop was
realised experimentally, confirming the calculation. It was shown that, for small contact
angles, the solid surfaces were pulled together due to the wicking of the resin melt,
whereas, for angles larger than 7/2, an equilibrium distance between fibres was reached.

Considering the magnitude of the capillary pressure (£10 Pa), its effects on the
impregnation rate can be important for low pressure processing techniques (e.g. vacuum
bagging); much care must therefore be taken in the choice of the materials to be used.
For processes using higher mechanical pressures (>10° Pa), the influence of the
capillary pressure on the impregnation rate can be neglected, but surface energy effects
may determine the content and topology of voids entrapped in the laminate, and thereby
affect its mechanical properties.
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