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ABSTRACT

The paper investigates the suitability of the idealised fibre reinforced fluid (IFRF) model for the
thermoforming of fabric reinforced thermoplastic sheets, and a strategy is proposed for
determining the materials parameters required to characterise the sheet rheological behaviour.
The IFRF theory for a viscous fluid with two inextensible directions is developed for modelling
fabric sheets and specific forms of the constitutive equation are derived. Some simple flows are
analysed and it is shown that in through-thickness shear flows, as for example in a torsion
rheometer experiment, the fabric angle ¢ remains constant, whereas in in-plane flows ¢ is a
function of the strain rate. Trellis deformations are investigated by considering the in-plane
stretching flow of a fabric with fibres inclined to the load direction. The torsion rheometer test
is analysed for a fabric pre-deformed to a fabric angle ¢. In this case tests on rectangular
specimens with different aspect ratios and fabric angles are proposed which enable the three
viscosities in the model to be determined.

1. INTROBUCTION

There is considerable interest in fibre reinforced thermoplastic (FRTP) materials for aerospace
and automotive components and a number of thermoplastic prepreg materials are commercially
available with both glass and carbon fibre reinforcement. These materials have advantages over
traditional thermosetting prepregs in that components may be thermoformed with short cycle
times by hot stamping or diaphragm forming. The practical difficulties of obtaining successful
thermoformed components has led to a requirement for understanding the rheological
properties of FRTP sheets and for the development of computational techniques for process
simulation based on these properties. One of the first high performance FRTP prepregs was
APC-2 [1] in which unidirectional (UD) carbon fibres with volume fractions of about 60%
reinforce a PEEK matrix. Processing of these materials takes place by diaphragm forming or
rapid stamping at temperatures of 360 - 400°C at which the FRTP sheet consists of very stiff
carbon fibres embedded in a soft viscous matrix. The rheological properties of APC-2 sheets
are well characterised and successful process models have been developed based on
constitutive equations for an idealised fibre reinforced fluid (IFRF ). These rheological models
are derived from a general theory for idealised fibre reinforced materials developed by Spencer
[2] and his co-workers in which elastic, viscoelastic or plastic materials are reinforced by
inextensible fibres. More recently Rogers [3] has developed a viscous form of the theory for
modelling FRTP prepregs which has been successfully applied to a number of thermoforming
problems for UD reinforced sheets. This fibre reinforced fluid model and its application in finite
element (FE) programs for process simulation are reviewed in some detail in {4] and [5].
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Since most structural components require fibre reinforcement in more than one direction and
because it is labour intensive to stack up to 32 UD plies with different orientations for a 4 mm
wall thickness, FRTP sheets with fibre fabric reinforcement have been developed. Recen!
examples are Cetex [6], which is a carbon fabric reinforced PEI resin for aerospace
applications and Vestopreg [7], a glass fabric reinforced PA resin developed for automotive
applications. Models for fabric reinforced materials are discussed in [8] - [12], where it is
shown that the dominant in-plane deformation mechanism is the 'trellis effect’ in intraply shear
in which the fabric angle between the warp and weft directions changes. Secondary
deformation mechanisms are fibre straightening and fibre extension under tensile forces
Simulation software based on an FE program which models the trellis effect has been
developed in [8] and applied to model the drapability of fabrics. The trellis model is purely
kinematic and consists of a mapping of the fabric geometry from an initial to 2 final surface,
with intraply shearing as the only deformation mechanism. In [11] a similar program which also
includes fibre extension has been used for the forming of fabric reinforced thermoplastic sheets,
based on an FE model for a fabric as a network of elastic beam elements connected at nodal
points. During intraply shear the fabric angle between the initially orthogonal fibres is reduced
until an angle is reached at which the fabric locks or starts to buckle out-of-plane. Thus the
main materials input data for these models is the locking angle of the fabric which limits the
intraply shear deformation.

- None of these fabric models includes the influence of the viscous matrix. Thus they cannot take
account of the influence of processing conditions such as temperature, rate of loading, contaci
forces, interply friction and cooling effects which occur in the thermoforming process of FRTP
materials. The aim of this paper is to propose a rheological model for fabric reinforced
thermoplastic sheets which includes the matrix viscosity and which could be used in process
simulation software. This is based on the extension of the successful IFRF for UD sheets in [3]
to viscous sheets with two families of inextensible fibres. The fibre kinematics are already
included in the IFRF constraint and constitutive equations, since the fibres are nextensible in
the two main directions in the fabric, they are convected with fluid elements and can rotate in
relation to each other in intraply shear deformations. Thus the model combines the important
kinematic effects of the fabric model with a viscous fluid matrix.

The starting point of the present investigation in Section 2 is a general constitutive equation for
an idealised material reinforced by two families of inextensible fibres given by Spencer [2]. A
specific form of the theory suitable for modelling a 2-D fabric with a viscous matrix, which

solution is given for a fabric with fibres inclined at angles + ! ¢ to a tensile load, which
models the trellis deformation effect. Measurement of ¢(t) during the test could provide a
method of determining the viscosity parameters. Torsion rheometer tests are currently
favoured for measuring the two viscosities for UD FRTP sheets. In Section 4 this test is
analysed for the fabric model. It is shown that torsional theometer tests on 0/90 fabrics are not
sufficient to determine the three viscosities and that tests on a deformed fabric with fabric angle
¢ < 90° are required. Section 5 concludes with a discussion of the validity of the fabric model
presented here as a basis for the simulation of the thermoforming process for fabric reinforced
FRTP sheets.
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2. IDEALISED VISCOUS FLUIDS WITH TWO FAMILIES OF FIBRES

2.1 General formulation

Fig. 1 Notation for the deformed fabric reinforced sheet

The fabric reinforced composite sheet is modelled as a continuum with continuously distributed
fibres. Each ply consists of an incompressible, anisotropic Newtonian viscous fluid reinforced
by two families of high stiffness fibres, which are assumed to be inextensible. The fibre
directions in the fabric are denoted by unit vectors @ and b, which are mechanically equivalent
so that the fabric has identical properties in the two fibre directions. The fabric angle is denoted
by ¢ so that cos ¢ = a . b, the scalar product of the fibre directions. At the start of a
thermoforming operation the fabric will usually have orthogonal fibres, but during forming the
fibres are convected with the fluid causing them to rotate so that in general they will be
inclined at some angle ¢ < 90°, as shown schematically in Fig. 1. The derivation of the general
inextensible constraint equations and the constitutive equations is described in [2] and [3], and
we adopt similar notation and conventions here. Vector and tensor components are referred to
a system of rectangular Cartesian coordinates x; (=1, 2, 3). The bold script is used for
vector and tensor quantities and we adopt both an indicial and a whole vector notation for
vectors and tensors, as appropriate. The motion of the continuum is described by the velocity
vector ¥ and the fibre orientation vectors a, b, which are in general functions of position x and
time t. The appropriate kinematical quantity for describing the flow of a fabric reinforced sheet

is the Eulerian rate of strain tensor d defined by
d=%(Vw+ (Vv))

where V is the derivative with respect to position x so that in index notation

d; = Y2 (0v;/0x; + av;/dx; ) D)

Other convenient quantities are the tensors A, B, C defined in terms of the dyadic product of
two vectors a b=(a;b;) as

A=aa, B=bb, C=%(ab+ ba)(a.b) 2

B L IR



148

We mtroduce the trace of atensor tr T = T; = T;; +Ty, + T3, , and note that since @ and }
are unit vectors trd = trB = |

The constraints of incompressibility, and inextensibility in the two fibre directions, leads to the
following kinematical restrictions on the deformation fields in the fluid ( see Spencer [2]:

Incompressibility: trd = 0 3)

Fibre inextensibility: trdd = trBd = 0 4)
The incompressibility condition expresses mathematically that fluid volumes are preserved, and \
the inextensibility condition that the strain rate components in the fibre directions are zero. I |
follows from (3) and (4) that of the 6 components of the strain rate tensor only 3 are
independent. A further assumption is that the fibres rotate with the fluid elements during
deformation which leads from [2] to the following equations for the orientation vectors -

Da/Dt = a. Vv, Db/Dt = b.Vy )

where D / Dt is the material time derivative defined as
Dg/Dt = 3g/3t + v.Vg 6)

The fabric model is completed by adding to the kinematical equations (1), (3), (4) and (S)J
constitutive equations which define the Cauchy stresses o in the material in terms of the strain |
rates d and the fibre directions @ and b. For a fabric reinforced sheet under thermoforming |
conditions we require the general form of constitutive equation for a viscous fluid with two |
families of inextensible fibres. Such an equation for elastic materials is given by Rogers [3],
from which the following general form for a Newtonian viscous fluid can be deduced on
applying the viscoelastic correspondence principle :

o= Pl+ S,A+ 5B +2yd+ 2,(Ad+dA+Bd+dB)+2,(Cd+dC) (7)

The kinematic constraints (3) and (4) have caused three arbitrary terms to appear in the
constitutive equation which are not determinate from the deformation, these are the hydrostatic

pressure p and the fibre tension stresses S, and S, which are the reactions to the inextensibility
constraints in the fibre directions.

This general constitutive equation contains three independent viscosity parameters 71, 7, and
73, the first two of which are related to shear along and transverse to the fibres. We note from
(2)that C=0 when a.b =0, ie when a is perpendicular to & . It follows that the third
viscosity 7; contributes to the stresses only when the fibres are non-orthogonal and so is
related to trellis deformations in the fibre plane where the fabric angle ¢ changes. Equation (7)
is the most general invariant form for the stress tensor as a function of d, a, b , which is linear
in the strain rate tensor 4. We note from [2] that the quantity (@ b)? = cos? ¢ is also a possible
scalar invariant so that the viscosities 1> M2 and 73 could in general be functions of cos? ¢ .
For 0/90 fabrics cos ¢ =0 and cos? ¢ remains small for fabrics with fibre angles above 65°.

In this paper we consider a first order theory and assume that the viscosities are materials
constants independent of fabric angle ¢.

The thermoforming model for fabrics is now completed by the equations of motion. Sheet
forming is a relatively slow forming process and if we assume that dynamic inertia effects are
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eaandb negligible in the deforming sheet, then in the absence of body forces the stress o must satisfy
the equilibrium equations which in component form are :
ds to the do;, / Ox, = 0 8)
2]:
Equations (3), (4), (5), (7) and (8) are the basic equations of the theory. There are essentially
3) [2 unknown quantities to be determined. These are the velocity components v, the fibre
directions a, b and the reactions to the constraints p, S, and S;. The theory has 12 scalar
) equations in the 3 equilibrium equations (8), the 6 fibre rotation equations (5) and the 3
constraint equations (3) and (4). Thus with the application of suitable boundary conditions, the
ved, and theory is well determined. It follows that without the reactions p, S, and S, , the
> zero. It incompressibility and inextensibility constraints would lead to an overdetermined theory.
ly 3 are
s during We note at this point a simplified form of the general theory which may be of interest for
ERe modelling the thermoforming of certain fabric composites. This follows from (7) on assuming
that the extra stresses are a function only of the strain rates and are independent of the fibre
() directions. We may thus assume that 7, = 13 = 0 in (7) leaving only a single viscosity

parameter 7,. In the terminology of Spencer [2] this model is a constrained viscous fluid. It
could be of interest for fabric reinforced sheets whose viscosities are not strongly influenced by
the presence of the fibres, ie the longitudinal. transverse and trellis shear viscosities are the

(6) same, which may be the case for loosely woven fabrics or FRTP sheets with high resin
contents.
and (5)
he strain 2.1 IFRF model for fabric reinforcement
bforming
wvith two In order to see whether (7) is a suitable constitutive equation for modelling FRTP fabric
oers [3], composites, simple flow solutions need to be investigated and compared with experimental
uced on observations, and test methods are required for determining the three viscosity parameters.

Specific forms of the constitutive equation can be written down depending on the choice of
coordinate system and the fibre direction vectors &, b. In general fabrics of interest have

7N orthogonal families of fibres. However, during thermoforming the fibres may rotate and the
fibre angle could change from the initial value of 90°. It follows that the required form of the

r in the model should be for non-orthogonal fibres with general fabric angle ¢ and contain the three
drostatic viscosity parameters, since the reduced theory for orthogonal fabrics with two viscosities is too
ensibility restrictive. Note that several specific forms of the general theory may be required depending on

the loading conditions of interest.. The one chosen here is convenient for analysing the trellis
effect in fabric composites and for understanding certain torsional rheometer tests. Other forms

7, and of the general theory are discussed in [13] and applied to shear loading of fabrics.

ote from

the third Our interest is in thin fabric reinforced thermoplastic sheets in which the fibres lie in a plane,
nd so is which is taken as the x;-x, plane. Small out of plane fluctuations in the fibre directions due to
ation (7) the weave pattern are neglected. In this paper we choose coordinate axes which bisect the fibre
is linear directions in the fabric, thus the two families of fibres make angles + 0 to the x ;-axis as shown
possible schematically in Fig. 2 and the fabric angle ¢ =2 6. The fibre direction vectors are given by :
cos? ¢ .

ove 65°. a = (cosf,sing, 0) b= (cosf,-sinb,0) &)
naterials

where for families of straight fibres 6(t) is independent of position x in the sheet. We introduce

the notation
1. Sheet m=cos (t), n=sinb(t)
ects are and may assume without loss of generality here thatm # 0, n # 0 for all times t.

i_
18
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-

On substituting (9) into (7) we obtain the following explicit expressions for the stres

components :
O = Pt (S, 8) vdy [2m+8mny+ 4 mP (P - n?) g |
022 = P T (S5, +8) vy [2m +802, - 42 (mR-n?) 1 ]
033 = -p + 2nyd3;
3= dpz[2m+4nin, - 22 (m?-m2) 9]
O;3= diz[2m+4mP gy +2m? (m?-02) 95 ]

Op2= mn(S8,-8,) + dp[2y+4n,+ 2(m*-n?)2 ;5]

(10)

Since our main interest is in the in-plane and through-thickness behaviour of thin FRTP sheets. :
it is convenient to write the constitutive equations in an alternative form. From the

incompressibility condition (3)
dy; = -(d;;+dy,)

hence from (10); the pressure is given by

P = -033-2q;(dy; +d,,)

and on substituting for the pressure in (10) the equations take the form :

011 —033 Dy Diz 0 ¥ dy m’(Sq +Sp)
0227033\ Di2 D22 0 | dy (S, +S3)
012 0 0 DegN\2diz) \mn(s, —Ss)

(023) =(D44 0 )(Zdzs)

013 0  Dss\2d;s

where the viscosity coefficients D, are given by :
Dyy= 4[m+2m?y,+ m? (m? - n?) 93 |
Dpy= 4[m +20ny - n*(m2-12) 9, ]
Dy = 21
Des= m+29p+ (m*-n?)2n,]
Dy= m+2n2n - n?(m?-n?) g,

Dss= m+2mn+ m?(m?-n2) g,

6
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For thin sheets under plane stress conditions in the x;-x, plane it is usual to assume that the
through thickness stresses are zero in which case

073 =093 =033=10

and with o;; = 0 equation (10) is the plane stress constitutive equation. The analysis of torsion
theometer tests is based on (11) and we cannot then assume plane stress conditions. The
general form of equations (10) and (11) are thus preferred since they allow direct and shear
contact stresses between FRTP sheets.

In addition to these constitutive equations the strain rate tensor and fibre orientation vectors
must satisfy the inextensibility conditions (4) which take the specific forms :

m2d11+2mnd12+n2d22=0, mde-Zmn d12+n2d22=0 (16)
and the two independent rotation equations :
Dm/Dt = md;; +nédv)/dx,, Dm/Dt = mdj;-nadv/dx; a7

Because m2+n2=1 and the conditions (16), it can be shown that the two further equations
in Dn/ Dt are redundant. It will be shown in the following sections that the kinematical
constraints (16) and (17) impose severe restrictions on possible flow fields in the model for

fabric reinforced sheets.

It should be noted here that equations (10) - (17) are only valid for fabrics as shown in Fig. 2
and for flow fields in which the fibre directions remain at angles + @ (t) to the x;-axis. For
general flow fields this will not be the case and it would then be necessary to transform the
spatial coordinates (xj, X,, X3) to local coordinates which bisect the fibre directions in order to
use (10) and (11) for the calculation of stresses. Other choices of the fibre directions are more
suitable for particular flows and for implementation into FE programs, for example in the latter
case it is convenient to use an element coordinate system with the x;-axis as one fibre direction
and the second direction in the x;-x, plane at angle ¢ to the x;-axis. This form of the general
theory is developed further in [13].

3. IN-PLANE FLOWS

3.1 Stretching of a fabric sheet

i S G-

Fig. 2 Fabric sheet with fibres at + 0 to the x;-axis

In this section we analyse in-plane flows in the model proposed above for a fabric with fabric
angle 20 with the x;-axis chosen as the bisector of the fibre directions, as shown schematically
in Fig. 2. An exact solution to the governing equations is given which could be used to validate
the model against the observed response of stretched fabric sheets subjected to trellis
deformations, and as a possible basis for measuring the viscosity parameters.

7
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We consider first the inextensibility constraint equations (16). These can be re-written as

mzdu + n2d22=0, mnd12=0 (18)
Since m # 0, n # 0 it follows that the in-plane shear rate d;; = 0. Because of the
incompressibility condition (11) and (18), it follows that only one of the three direct strain

rates dy;, dy, and dy; is independent. Thus the most general in-plane flow of the fabric whic
satisfies the kinematic constraints has the form -

dp=-dym*/n?, dy=dj(m2-n2)/me, diy=djs=dy; =0 (19)
and is thus characterised by the single strain rate component d;;. Note that this is the mosi |
general form of in-plane flow which satisfies the inextensibility and incompressibility :
constraints, and which preserves the balance of the fabric, ie that the fibres remain at + a(t) to |
the x;-axis for all times t, which is a severe restriction.

Our interest is in modelling the stretching of a fabric sheet as shown in Fig. 2. We consider the |

case of the sheet pulled at a constant velocity in the x; direction, thus the axial strain rate has a
constant value A >0 and we may set

dip =\ (20)

On integration of (19) and (20) and assuming that the sheet in Fig. 2 is fixed at the left end
which is also the origin of the coordinates, we obtain for the velocity field in the sheet :

V1=M1,

v, = - A\x, cot’d V3 = Ax;3 cos 20/ sin? @ (21)
Substitution of the velocity fields in (17) leads to a single differential equation for o)
di/dt = -\/tan ¢ (22)
which has the solution |
cos 0 = cos O, exp (\t) (23)

where + 6, are the initial fibre angles in the sheet at time t = 0. We note that (23) is even in @
so that it has roots in pairs + 6 and it follows that during the stretching flow the fabric remains
symmetric about the x;-axis. It follows from (22) and (23) that when A\> 0 the fibres rotate
towards the x;-axis with an angular velocity which is determined only by the applied strain rate
A and is independent of the material constitutive law. We note that the axial strain in the sheet

€1 = N (24)

thus the sheet undergoes a trellis deformation with the fibre angle being dependent only on the
axial extension of the sheet.

Next we consider what applied stresses are required to maintain this deformation field in the
FRTP sheet. Substitution of (19) into (13) gives for the non-zero stresses :
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Opp- 033 — )\DII -7\D12m2/n2 2 mz(Sa+Sb)
Opp- 033 = )\DIZ o wzz m?/n’ + (Sa + Sb) (25)
0pp = mn(Sa—Sb)

In the tensile test depicted in Fig. 2 loads at the end of the specimen cause uniaxial stresses oy,
in the sheet. On assuming there are no applied transverse and shear stresses we may set o7, =
0,; = 0. We may also use (10); and (19), to define the pressure p so that the through-
thickness stresses o33 = 0. Hence (25), and (25); may be solved explicitly for the fibre
tensions, giving

Sa=Sb= )\(szzz-nlez)/2H4 (26)

and the only non-zero stress component is the applied axial stress, which may be expressed 1n
terms of § as :

O = X[41]1 = (31’1 = 2’]]2) sin? 20 - %?']3 S1n240]/51n40 (27)

For the steady flow being considered the stresses are functions of time t but not of position X,
thus the equilibrium equations (8) are satisfied automatically. It follows that the velocity field
(21) and fibre orientation function 6(t) in (24), with the stresses (26) and (27), provide an exact
solution in the model for the steady extension of a fabric reinforced sheet.

3.2 Validity of the fabric model

Next we consider whether the proposed theory is a suitable model for fabric reinforced
thermoplastic sheets during thermoforming. This can be assessed by comparison of the
predicted flow field with the observed or measured behaviour of fabric sheets. We consider a
0/90 fabric reinforced thermoplastic sheet loaded in tension along the bisector of the fabric
angle in a displacement controlled test with a constant strain rate A, as depicted in Fig. 2. Thus
0, = 45° and from (22) in a tension test where A > 0 we see that df / dt < 0 and the fibre
rotates towards the x;-axis with an angular velocity which increases as 6 is reduced, so that
the fabric angle 20 decreases with loading time. From (21) the stretching flow in the x;
direction is accompanied by lateral contraction in the transverse x, direction, and for 8 < 45° by
an increase in sheet thickness. If A < 0 as in a compression test the fabric angle increases,
accompanied by an expansion in the transverse direction and a thickness reduction. Thus the
flow field simulates the trellis deformation observed in fabrics. We note that there is a
mathematical restriction on the amount of rotation in the fibres since |cos 0| <1, thus from
(23) and (24)

&= M < -logcoséb, (28)

and the tensile strain has a maximum value. However before this strain is reached in practice
the fabric will certainly reach a locking angle ¢*.

The analysis shows that the tensile test proposed here is an excellent method of studying the
trellis effect in fabric sheets. In practice it should be possible to perform the tests by placing the
fabric prepreg specimen on a heated plate at the processing temperature and by applying the
tensile load through grips attached outside the heated region. The fibre angle during
deformation could then be observed from above. By measuring the rotation 6(t) during loading
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equation (23) could be validated as a first check on the model. The test can be continued up to
the locking angle ¢* at which no further in-plane rotation is possible, which will b
accompanied by out-of-plane buckling of the sheet, and/or a rapid increase in the applied load

This minimum fabric angle is an important parameter for fabrics and test data obtained can then
be used as a minimum allowable angle or failure condition during flow simulations based on the
constitutive model proposed here. Data on the locking angle for dry fabrics obtained froni
shear tests in a picture frame rig are reported in [10] and [12]. This angle depends on seversl
fabric parameters, such as fibre and weave type, reinforcement weight / unit area, etc. Typical
reported values for glass fabric [10] are 72° (plain weave, 200 g/m?), 47° (satin, 300 g/m?)
with lower values for carbon fabrics [12] of 28° (plain, 200 g/m?) and 25° (satin, 360 g/ m?)
The data themselves are inconclusive and it is also unclear whether the presence of the
thermoplastic matrix will act as a lubricant and lower the fabric angle, or whether it will restric!
fibre rotation and hence increase the angle. Test data on fabric reinforced thermoplastic
prepregs are thus required. They are also a means of bringing information on different fabric
types into the model.

Finally, by measuring the longitudinal viscosity 7= 0;; /A in the test some information can be
obtained on the three viscosity parameters 7;, 7, and 3. Whether this test leads to a practical
method of determining the viscosities is not yet clear. Even if these viscosities are material

“constants, as under constant temperature and rate conditions, we see from (27) that the
longitudinal viscosity 7 is time dependent as a result of the fabric angle 26 changing with time
In theory by measurement of 6(t) and the tensile load in a constant strain rate test, equation
(27) may be used at three different times to give three linear equations for the determination of
11, 1, and 3. Additional test data at other times can then be used to check the model. We note
that for the constrained viscous fluid model 7, = 73 = 0 and the longitudinal viscosity i
considerably simplified, but is still time dependent.

4. TORSIONAL FLOW IN THIN PLATES

Torsional viscometer test are well established [14] for measuring the longitudinal and
transverse viscosities 7y, and 9y of UD FRTP sheets at the forming temperature, using the test
procedure and analysis method proposed in [3]. In this section we consider through-thickness
shear flows in the fabric model and extend the torsional rheometer test analysis method to
fabrics as a means of measuring the three viscosity parameters required in the model. The test
set-up is shown schematically in Fig. 3. A thin rectangular plate specimen with sides length a, b
and thickness h, having fibres inclined at angles + 0 to the x;-axis, is subjected to a steady or
cyclic torsional flow by application of a torque on the upper plate of the rheometer about the
x3z-axis. A transducer measures the torque applied on the fixed lower plate. For thin specimens
with possible edge effects neglected the flow field is essentially pure torsion. As discussed in
[3], if the lower plate is fixed and the upper plate rotates with constant angular velocity Q | the
velocity field is :

v;=-Qx,x3/h, v,= Qx;x3/h, ve=20 (29)

It follows from (1) that the strain rate components are :

d13=-’/29x2/h, d23= %Qxl/h, d11=d22=d12=d33=0 (30)
and the incompressibility condition (3) and inextensibility conditions (16) are satisfied
identically. The flow field is a through-thickness shear of the FRTP sheet with no in-plane

extension or shear component.
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Plate specimen

Fig. 3 Schematic diagram of the -torsional rheometer test
The fibre rotation equation (17); for the + @ fibres now becomes
d(cos@)/dt = -Qx;sinf/h 1)
and since we assume that 6 # O this reduces to :
dé/dt = Qx;/h

Equation (31) is an odd function of @ and on setting 6 — - 6 it becomes identical to (17),
which is therefore automatically satisfied. The solutions of (31) for the two fibre directions are

therefore :
0= 4+6,+ Qx;t/h (32)

where 6, is the fabric angle at t= 0. It follows that the two families of fibres rotate together
with the same angular velocity given in (31), and that the fabric angle ¢ = 2 6, remains constant
during the test. Each plane of the plate through the thickness rotates with a different angular
velocity, varying linearly from O to { between the baseplate and the top plate. Note that the
angular velocity is kinematically determined and independent of the constitutive equations for
the material.

Thus in a torsional flow the fabric angle does not change and the trellis deformation is no
longer observed. A further consequence of this rotation of the fabric is that for times t> 0 the
x; coordinate axis no longer bisects the fibre directions in the fabric except on the plane x; = 0.
It follows that the constitutive equations (13) and (14) are only valid for calculating the
stresses on the base plate where the fibre angles remain at + 6, In order to use these
constitutive equations for calculating the stresses on planes x; > O it is necessary to use
transformed coordinates which rotate with the material on each plane through the thickness.
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Next we consider the applied torque on the base plate. On assuming there are no applied (4
plane stresses in the plate and since the in-plane strain rate components in (30) are zero, ¢
follows from (13) that S, = Sy = £ = 0 and the only non-zero stress components are :

O3 =°QX2D55/h , Oy3 = Qx1D44/h (33)

with D, and Dss given in (15). As discussed in [3] it is easily verified that (33) satisfy fls
equilibrium equations which reduce to

3013/3x1 iz 30'23/8X'2 = ( (34)

and the applied torque on the base plate x3 = 0 is given by :

M= | | (x05-%,05) dx; i, (33)

whence on integrating over the plate area '

|
M= Q(D55]] + D4412)/h (36)

~where /; and I, are the second moments of area of the plate section. For a rectangular plat
with sides a,b this may be written : '

M=ablQqg*/12h (37
where 7* is the torsional viscosity |
17* = D55 = az/bz) D44 (38)

On substituting for D, and Dss from (15), noting that on the base plate 6 remains constan

at 6=40,, and on setting the square of the plate aspect ratio c = a?/ b? , we obtain for the |
torsional viscosity :

7* = 9, (1+¢c) + 2 7, (cos? O, +c sin? 05) + 13 cos 20, (cos? 6,- c sin §,) 39)

We see from (39) that measurement of the torsional viscosity #* on three different plate
specimens enables in principle the three viscosities 71, 1 and 755 to be determined. For an
orthogonal fabric 6,=45° hence cos 26, = 0 and the 73 contribution to * is zero. Since the
fabric angle remains constant in the test, it is thus not possible to measure all the viscosities on
a 0/90 fabric. Test on a pre-deformed fabric sheet with fabric angle ¢ =26, < 90° are thus
necessary. A possible test programme might consist of the following torsional rheometer tests :

Standard prepreg - fabric angle o = 90° ;
Square plate a/b=1:
7* =2(m+ 1) (40)

Deformed prepreg - fabric angle ¢ = 20, < 90°:
Square plate a/b=1: |
7% =2(m + n) + n3cos?20, (41)

Rectangular plate a/b=2 :
7% = 5n; + 29, (cos? O,+4 sin §,) + n3 cos 20, (cos* f,- 4sin*6,)  (42)
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The results of the first two tests on square plates enables (n; +1,) and 73 to be determined.
The third test on a rectangular plate then gives a further linear relation between 1, and 7,.
Since 6, remains constant during the tests, the test procedure should be easier to carry out
than the tension tests proposed in Section 3 since under constant test conditions #* is constant.
We note that for the constrained viscous fluid model in which 9, = 53 = 0 the torsional
viscosity n* is independent of the fabric angle 6,. Thus the validity of this simpler model could
be established in the tests. By varying test temperature and angular velocity 2 it should also be
possible to use the tests to measure the temperature and rate dependence of the viscosities.
However it is first necessary to produce the pre-deformed fabric specimens. It is suggested that
these could be produced from tension tests on orthogonal fabrics carried out as described in
Section 3. These could be carried out at the melt temperature until a suitable fabric angle is
reached, and then cooled to room temperature where the rectangular plate specimens for the
torsional rheometer tests can be cut out.

5. CONCLUDING REMARKS

The IFRF theory for a viscous fluid reinforced by two families of fibres is developed as a
possible model for the rheological intraply behaviour of fabric reinforced thermoplastic sheets
during thermoforming. The general constitutive equation for an incompressible viscous fluid
matrix reinforced by two families of inextensible fibres contains three viscosity parameters and
two indeterminate fibre tension functions, in contrast to the two viscosities and single tension
function of the established rheological model for UD FRTP sheets [4], [S]. The proposed
fabric model is idealised since it takes no account of the fabric weave and does not include any
interaction effects between the warp and weft fibres. It models the influence of the forming
flows on the fibre directions and the kinematic effects of the assumed inextensible fibres on
possible deformation and flow fields. It extends earlier kinematic models for fabrics [8]-[10] to
include a viscous matrix. Interaction between fibres is included in such continuum models
through their influence on the viscosity parameters and on the locking angle of the fabric ¢*,
which require measurement for different fabric reinforced prepregs. The value of ¢* could then
be a minimum allowed fabric angle for the validity of the constitutive law, and the attainment
of this angle in an element during forming could be a possible failure criterion in the model.
Viscoelastic and thermal effects which may be important on thermoforming of fabric prepreg
could be included in the theory to first order by allowing the viscosity functions to be rate and
temperature dependent.

The constitutive equations now require validation by careful comparison of predicted flow
fields and fibre orientations with the observed behaviour of thermoplastic prepreg with fabric
reinforcement. A specific form of the theory is given for fabric sheets reinforced in the x;-x;
plane with fibres inclined at angles + @ to the x;-axis. This is convenient for the analysis of
tension tests and torsional rheometer tests on fabric reinforced sheets. Both types of test would
give valuable information on the validity of the model and could be used as a basis for
measuring the three viscosities in the theory. It is shown that during in-plane loading of fabric
reinforced sheets the fabric angle will change with time under load, which complicates the
analysis of the test for determining sheet viscosities. By contrast in a torsion rheometer test the
fabric angle is predicted to remain constant during the test. However, a consequence is that
tests on a pre-deformed fabric are required to obtain all three viscosities. Other specific forms
of the theory are more suitable for modelling in-plane shear tests on fabrics, or for
incorporation into FE forming software, and these are discussed further in [13].
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