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Processing affects properties
by changing the fiber orientation state
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To connect processing, structure, and properties
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We want descriptors that can: 1
X represent any orientation state
* be measured experimentally
X be used to predict flow-induced orientation

* be used to predict properties



Describing the orientation of a single, rigid fiber is eas
but real composites have a distribution of orientations




Groups of fibers can be described by

the orientations of many fibers p", k=1to N
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We can also use an orientation distribution function
P(o" < ¢ < 9" +do) = y(0") do
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We can describe groups of fibers using

_ _ I pip1 PipP2 P1pP3 |
For each fiber, find PP = DpiP; = | P2p1  D2DP2  DP2P3

| P3P1 P3pP2 P3P3 |

Average over all fibers [A = <pp>] ] ] ——
Ay A Ags — |- -
Aij = (pipj) = | Aar Az Ass |
| Az1 Asx Ass | — L

Aij = Aji Al 4 Agg + Ags =1

Fourth order tensor: [A — (pppp>} Akt = (pipjpEp1)




Orientation tensors work for planar orientation as well

A <P1p1> <p1p2>

<p2p1> <p2p2>

planar orientation

A_ | 0555 —0013 A_ | 082 -0032
| —0.013  0.445 — | —0.032 0.180



Orientation tensors also provide principal values
and principal directions of orientation
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The Use of Tensors to Describe and Predict
Fiber Orientation in Short Fiber Composites
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Synopsis

The properties of a set of even-order tensors, used to describe the probability
distribution function of fiber orientation in suspensions and composites containing
short rigid fibers, are reviewed. These tensors are related to the coefficients of a
Fourier series expansion of the probability distribution function. If an n-th-order
tensor property of a composite can be found from a linear average of a transversely
isotropic tensor over the distribution function, then predicting that property only
requires knowledge of the n-th-order orientation tensor. Equations of change for
the second- and fourth-order tensors are derived; these can be used to predict the
orientation of fibers by flow during processing. A closure approximation is re-
quired in the equations of change. A hybrid closure approximation, combining
previous linear and quadratic forms, performs best in the equations of change for
planar orientation. The accuracy of closure approximations is also explored by
calculating the mechanical properties of solid composites with three-dimensional
fiber orientation. Again the hybrid closure works best over the full range of
orientation states, Tensors offer considerable advantage for numerical com-
putation because they are a compact description of the fiber orientation state.

INTRODUCTION

The orientation behavior of short fibers immersed in a viscous
fluid is an important problem in the processing of composite ma-
terials. Whenever such a material is formed, the flow changes the
orientation of the fibers. This fiber orientation pattern is the
dominant structural feature of a short fiber composite. The com-
posite is stiffer and stronger in the direction of greatest orien-
tation, and weaker and more compliant in the direction of least
orientation. Theories exist which can predict the mechanical
properties of the composite once the fiber orientation state is
known.!"® More recently, efforts have been made to derive quan-
titative relationships between processing conditions and fiber ori-
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closure which combines the linear and quadratic forms performs
well over the entire range of orientation. The compact nature of
the tensor description saves considerable computation in two-
dimensional predictions of fiber orientation, and makes three-
dimensional calculations feasible.

This research is sponsored by National Science Foundation Grant
No. MEA 83-51123. We are also grateful to Professor F. A. Leckie of the
University of Hlinois, who first suggested the use of tensors to us.

APPENDIX: MECHANICAL PROPERTY PREDICTIONS

To obtain the mechanical property predictions in Tables I-IIT
one first chooses fiber and matrix properties. We use properties
typical of E-glass fibers and engineering thermoplastic matrices,

E; = 10.5 x 10° psi (A1)
vy = 0.20 (A2)

We are also grateful to Professor F. A.
Leckie of the University of lllinois, who
first suggested the use of tensors to us.
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Some conversions between descriptors are easy

kzltoNl
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others are difficult and require approximations

[A = (PP)
reconstruction closure microstructure
approximation generation

kzltoN}
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Any symmetric second-order tensor is orthotropic . ..

Orthotropic: three perpendicular A = \eje] + aeses + Aseses

planes of mirror symmetry e,
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Any symmetric second-order tensor is orthotropic . ..

Orthotropic: three perpendicular A = \eje] + aeses + Aseses

planes of material symmetry e
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so any ¥ or A reconstructed from A
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Can create

using information from the rate-of-deformation tensor*

Planar F closure (non-orthotropic):

A= f(A, D/Y, Cr)

1 81)7; Ovj

* C. L. Tucker, INNFM, 310, 104939 (2023)

Simple shear flow, C; =0.05
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A planar distribution function that is non-orthotropic
iIs asymmetric about the principal axes of A
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Reconstruction of planar distribution functions



Fourier series reconstructions are non-physical
for common orientation states
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A better approach is to start with a function
that guarantees feasible results

2"d order: ve(p) = f(p-T-p)
non-negative function I adjust to match A
4t order: Yo(p) = f(pp: T : pp)

I adjust to match A
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Example 1: Maximum entropy distributions
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Example 2: Power law distributions
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We can improve accuracy by using a 4" order
power law and by optimizing r

Optimized r (OR4): {zng(p) — (pp:T:pp) /% } r = f(\,Cr)
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For a precise test, reconstruct distributions
from the planar Folgar-Tucker model

Jeffery fiber motion:

aligns fibers \
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The Jeffery distribution is too sharp
and the Bingham distribution is too smooth
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Max Entropy 4 w/ natural closure is good,
but OR4 w/ non-orthotropic F closure is better
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The closure must be accurate

to get a highly accurate reconstruction
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The new OR4/F approach works well across all C, values,
and is a major improvement for high alignment

Steady state, simple shear flow
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Key ideas

* We can improve planar reconstructions by combining

+ function based on (Pp: T :pp)"/*" 06

* tuned exponent r = f(A,Cr) o_5igﬂ37'gmker
 non-orthotropic closure for A o4l
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Going further will require new orientation descriptors

« Joint distributions for orientation and fiber length
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* Flexible fibers

 The “fabric” of fiber-fiber contacts



Charles L. Tucker Il

Fundamentals of
Fiber Orientation

Description, Measurement and Prediction

HANSER

Fiber Orientation Tools

MATLAB functions for fiber orientation
and mechanical property prediction

http://qgithub.com/charlestucker3/Fiber-Orientation-Tools
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