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Resin transfer molding

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited
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Void formation during resin infusion
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Void formation during resin infusion
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“Optimum”
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Tow permeability, void formation, and void transport
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… as a function of
● Processing conditions and “flow schedule”

○ Inlet pressure/flow rate, temperatures, etc.
● Tow geometry and fiber packing
● Resin rheology

○ Viscosity (as a function of time and temperature), shear 
thinning/thickening, etc.

● Degree of saturation
● Resin surface tension
● Fiber wetting and surface chemistry

○ What role does sizing play?
○ … electrowetting? Electrowetting schedule?
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Lattice Boltzmann method
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Probability density of particle at ‘x’,
with velocity ‘v’, at time ‘t’

Continuous Boltzmann equation

Lattice Boltzmann equation
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Lattice Boltzmann method
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Multicomponent flow

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

● Simulate both fluids on separate lattices
● Calculate order parameter

● Define a free energy functional based on the order parameter
○ Immiscible fluids: energy penalize gradients in the order 

parameter
● Momentum is transferred to each fluid via gradients in free energy

Blue: 𝜙𝜙 = −1
Red: 𝜙𝜙 = 1



12

12

Free energy and thermodynamics
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Recall:

Penalizes mixing 
of fluids

Penalizes change 
in order 
parameter;
Controls the 
equilibrium 
interface width

Bulk fluid thermodynamics
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Free energy and thermodynamics
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Bulk fluid thermodynamics

Interface thermodynamics

(Assuming flat interface between fluids at x = 0)

Equilibrium surface energy 
between two fluids
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Free energy and thermodynamics
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Surface thermodynamics

(Assuming flat interface between fluids at x = 0)
Equilibrium surface energy between two fluids

Free energy at solid boundary
(h > 0, fluid 1 is preferred
 h < 0, fluid 2 is preferred)
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Free energy and thermodynamics
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Surface thermodynamics

(Assuming flat interface between fluids at x = 0)
Equilibrium surface energy between two fluids

Free energy at solid boundary
(h > 0, fluid 1 is preferred
 h < 0, fluid 2 is preferred)

Surface tension parameter

Surface affinity
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Contact angle simulations
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Surface effects on voids and flow front
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< 90, “wetting”
> 90, “incompatible”
Guesses?

80 deg
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Surface effects on voids and flow front
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< 90, “wetting”
> 90, “incompatible”
Guesses?

100 deg
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“Permeability” depends on wettability
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“incomper”: 70 deg
“incomp”: 80 deg
“neut”:  90 deg
“wet”:        100 deg
“wetter”:            110 deg
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“Permeability” depends on wettability
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● Simulations reproduce expected scaling
● Inversely proportional to viscosity
● Proportional to pressure
● Somewhat insensitive to surface 

tension
● Can we use simulations to inform capillary 

pressure?

“Capillary pressure”
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“Permeability” depends on wettability
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𝑑𝑑

𝑑𝑑 = 2.25𝑟𝑟 𝑑𝑑 = 2.75𝑟𝑟

Looser still => invarianceLooser pack => less sensitive to 
           incompatibility
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Void formation: where and why
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80 deg, incompatible
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Void formation: where and why
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90 deg, neutral
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Void formation: where and why
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100 deg, wetting
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Surface tension and its interplay
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80 deg

90 deg

100 deg

“RTM-6”, but what about surface tension?
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Outlook

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

● Realistic fluid parameters, fiber volume fraction, boundary conditions
● Unstable for high density ratio + high viscosity ratio + high volume fraction

○ Mesh refinement
○ “Free surface” idealization

● Extend to 1) non-Newtonian fluids (e.g. shear thinning) and 
                 2) electrowetting
○ Carbon fibers are conductive; apply voltage difference?
○ Electrowetting is underexplored for modifying surface interactions during 

processing
○ May require micromechanical models to determine electrical response of 

resin
■ Polarization and electrostatic Coulomb forces
■ Surface tension
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Matthew Grasinger
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Feel free to reach out about internships, fellowships, collaborations, etc.
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