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ABSTRACT:  Numerical computation of textile permeability is important for composite 
manufacturing. Using Darcy’s law, permeability can be derived from a simulation of the fluid 
flow, i.e. after solving the Stokes, Navier-Stokes or Brinkman equations. The latter allow to 
model intra-yarn flow in case of permeable yarns. In this paper we present a numerical 
method for the calculation of the permeability of textile models based on a finite difference 
discretisation of the partial differential equations. Two different formulas for the calculation 
of the local permeability are discussed. Theoretical, numerical and in particular experimental 
validation is presented. 
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INTRODUCTION 
 
For the manufacturing of composites with textile reinforcement, the permeability of the textile 
is a key characteristic and is of particular importance for the injection stage of Liquid 
Composite Moulding. The prediction of textile permeability is important due to the often 
encountered problems of non-uniform impregnation, which may even involve void and dry 
spot formation. Permeability is a geometric characteristic related to the structural features of 
the textile at several length scales. Textiles are porous media and the permeability tensor can 
be defined by Darcy’s law 
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Here, Re  denotes the Reynolds number, ( ), ,u u x y z=
r r  the fluid velocity,  the 

pressure, 
( ), ,P P x y z=

K the permeability tensor of the porous medium and  denotes volume averaging. 
Eqn. 1 is a homogenized equation, where information about the internal geometry of the 
reinforcement is taken into account in K . Finite element or finite difference Darcy solvers 
thus require K  as input. Since measurements of textile permeability are time- and resource-
consuming, a reliable numerical prediction of K  is required.  
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Fig. 1  A unit cell setup 
 

For the calculation of K , we simulate the flow in a unit cell (Fig. 1) since textile has a 
periodic pattern. As textiles are also hierarchically structured materials, our model for fluid 
flow must also take into consideration the possible porosity of the yarns. Hence, in the 
following, if the yarns are porous, we will differentiate between inter-yarn flow and intra-yarn 
flow. The porosity is accounted for by the permeability tensor . In both cases we aim at 
the computation of the fluid velocity u

towK
r and the pressure P  in order to solve Darcy's law (1) 

for K . 
In the case that the model is limited to creeping, single-phase, isothermal, unidirectional 
saturated flow of a Newtonian fluid, the inter-yarn flow is described by the incompressible 
Navier-Stokes equations (here in dimensionless form), 
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Here,  and . If ( ), , ,u u x y z t=

r r ( ), , ,P P x y z t= Re  is small, the convective term can be 
neglected, and Eqn. 2 result in the Stokes equations. Later in this paper, we show numerically 
that for our applications both the Navier-Stokes and the Stokes equations can be used.  
Intra-yarn flow depends on the local permeability tensor  of the tow, and is described by 
the Brinkman equations [5] satisfying  

towK
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with the convection term included. 
We develop numerical software for the calculation of the permeability of textiles, named 
FlowTex. The input of a single layer of the textile model is provided by the WiseTex software 
[11,13,19] which allows the characterisation of a single-layer of the reinforcement or a 
regularly or randomly nested laminate [12]. 
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NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS 
 
For flow simulations in the irregular geometry of a textile, we have chosen to solve Eqn. (2) 
numerically on a regular staggered grid with a finite difference discretisation. An example of 
a textile geometry and its discretisation on a regular grid is shown in Fig. 2. 

 
 

Fig 2  A 3D and 2D voxel representation of a textile geometry 
 

In previous work the solution was performed using lattice Boltzmann algorithm [3]. The 
implementation described in this paper is based on the 3D finite difference Navier-Stokes 
solver NaSt3DGP, developed at the Institute for Numerical Simulation of the University of 
Bonn [1,7]. In order to apply the code for the computation of the permeability of textiles, 
several extensions to the code have been made. An interface between FlowTex and 
NaSt3DGP allows the input of the voxel description of the textile geometry [13,19] provided 
by WiseTex (Fig. 2). For the unit cell setup, we implemented periodic boundary conditions in 
three directions for the velocity, and periodic boundary conditions up to a constant gradient 
for the pressure (Fig. 1). To account for intra-yarn flow, the code has been extended to solve 
the Brinkman equations: we solve Eqn. 3 on the whole domain with variable 0 . It 
was shown by Angot [2] that this is a valid approach in which no extra interface conditions 
between the fluid and the porous part are required. This approach is a practical method to deal 
with the coupled problem of flow in a porous medium and flow in-between the yarns. An 
implicit treatment of the diffusive terms for the Navier-Stokes/Brinkman equations has 
substantially improved the speed of the permeability computations [17].  

towK< ≤ ∞

 
 

ANALYTICAL VALIDATION 
 
In our previous papers [17,18] we presented numerical and experimental results that take the 
textile geometry at three different length scales into account: the macroscale of the textile part, 
the mesoscopic scale of the unit repeat cell, as well as the microscopic scale of the fibres 
within the yarns. In this section we give an analytical validation of the proposed Darcy’s law 
for the calculation of the inter-yarn permeability with the help of homogenisation theory. Also, 
homogenisation theory provides us with a new possibility for the computation of the 
permeability tensor. Numerical validation of the latter approach will be given further in this 
paper. 
The direct numerical treatment of fluid flow in porous media is difficult and time consuming 
due to the rapid variations of the pore scale. However, when the characteristic size of the 
obstacles in a repeat cell of the medium, e.g. of the yarns, is small compared to the whole 
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sample, homogenisation theory allows us to “average” or “upscale” the equations of fluid 
mechanics that hold on one scale of the porous medium to the next scales. Hence, we avoid 
the solution of the fluid equations in the complicated pore geometry  by merely studying  the 
geometry’s homogenised influence on these equations [14]. 
Several authors have dealt with the homogenisation of the Stokes or Navier-Stokes equations 
in a periodic porous medium [9,14,15] and derive Darcy’s law as the limiting equation in the 
homogenisation process. In Darcy’s law information about the structure of the pore scale is 
only kept through the effective quantity of permeability. The permeability tensor K  in 

homogenisation theory is given as 1
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Here,  denotes the unit vector, ier Yτ ∈ , Y  the unit repeat cell of the porous medium and  
and  its corresponding fluid and solid part. Furthermore, 

FY

SY ( )w τr  and ( )π τ  are comparable 
to the fluid velocity and pressure of the Stokes equation. 
From a numerical point of view, this offers a further possibility for the computation of the 
permeability tensor. The solution of the above cell problems in 3D amounts to three Stokes 
equations with external forces ( )1 3i i

e
≤ ≤

r , from which we obtain ( )
1 3

i

i
w

≤ ≤

r for the input of K . 

This leads to the same results as the computation of K  by Darcy’s law since in the unit repeat 
cell these are equivalent problems [14]. Note that this method gives a straightforward 
definition for the computation of all components of K  whereas the calculation of K  via 
Darcy’s law requires solving a 9x9 system of equations. However, for the calculation of e.g. 

xxK , we neglect the influence of xyK  and xzK  in (1) which according to Table 1 is allowed and 
yields a direct calculation of xxK . 
 
 

LOCAL PERMEABILITY 
 
If we want to include the intra-yarn flow into the flow simulations, we solve the Brinkman 
equations (3), which requires the local permeability in every grid point which lies inside the 
yarn. At micro-level, the fibres are considered as regularly packed cylinders. Gebart [6] 
presents analytical formulas for the permeability of a porous medium which consists of a 
quadratic packing of cylinders for both flow along and transversal to the cylinders  
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with Vf  the local volume fraction, r  the radius of the cylinders and max / 4fV π= . 
Berdichevsky et al. [4] on the other hand present formulas for the local permeability 
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Fig. 2 Comparison of the Gebart/Berdichevsky formulas with numerical results 

 
Fig. 2 shows a plot of the different formulas. We see that for the permeability along the fibres, 
the curves of Gebart and Berdichevsky show comparable results, although the formulas of 
Gebart give a higher permeability. For the permeability in the transversal direction, however, 
the formulas give different results for higher volume fractions. 
Fig. 2 also shows the results of our computations with the software described above for a 
parallel square array of cylinders. The formula of Berdichevsky matches better with the 
numerical results for the flow along the fibres, although not for higher volume fractions. 
However, for the flow in the transversal direction, clearly the formula of Gebart gives better 
results. The FlowTex software calculates the local permeability in (and transversal to) the 
direction of the fibres according to (7) and (6). Once AK  and  are known, they are 
projected onto the main directions 

TK
, ,X Y Z which then yields the local permeability tensor .  towK

 
 

VALIDATION 
 
Analytical data 
 
In this section we compare the numerical results of the permeability of a cubic array of 
spheres with analytical results. On the one hand we can compute the flow field with the 
Stokes equations and obtain K  from the applied pressure drop P∇  and the average velocity 

field ur  in Darcy’s law (1) and on the other hand the same permeability will be obtained by 
solving the cell problems (4). For a periodic array of spheres Sangani and Acrivos [16] found 
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general solutions of the Stokes equations in series formulation, whose coefficients are 
determined numerically. For several volume fractions Vf  the authors computed the 
dimensionless drag force F  to which the first entry of the permeability tensor is related by 

1 6xxK rFπ= , with  the sphere radius. r
Both the permeabilities from numerical simulations as well as the semi-analytical ones are 
listed in Table 1 for various values of ( )1/ 3

maxVf Vfχ = , which is a scaled sphere volume 

fraction 34 3Vf r Lπ= 3 , where max 6Vf π=  corresponds to the case where the spheres are in 
contact. First of all, we note that all the values are in good agreement with those obtained 
analytically by Sangani and Acrivos [16] and deviate no more than 0.5% from them. 
Furthermore, the results obtained from the cell problem and by Darcy’s law are equal. This 
was to be expected as in homogenisation theory the cell problem is just an auxiliary problem 
for the definition of the permeability tensor and the derivation of Darcy’s law. But also for 
actual text geometries, the permeability tensor obtained from the cell problem is accurate as 
shown in Table 2. Hence, homogenisation theory not only applies to our textiles but also 
offers an easier way to implement an efficient method for permeability computations. 
 

Table 1: Computation of the permeability for a simple cubic array of spheres xxK
χ  Resolution :  Darcy's LawxxK  :  Cell ProblemxxK  :  AnalyticalxxK  

0.2 603 3.8135 E-01 3.8135 E-01 3.8129 E-01 
0.4 603 1.2314E-01 1.2314E-01 1.2327E-01 
0.8 803 1.3118E-02 1.3118E-02 1.3197E-02 
1 1003 2.5083E-03 2.5083E-03 2.5203E-03 

 
Experimental validation 
 
A comparison between the results of the Navier-Stokes/Brinkman solver with experimental 
data is given in Table 2. Information on the Natte textile and the Carbon woven fabric can be 
found in [8,10]. The Numerical and experimental results are in good agreement for the Natte 
textile (Fig. 3) and give reasonable results for the Carbon woven fabric. Table 2 also shows 
the results for a Parallel Square Array (PSA) of cylinders.  
For a typical unit cell of textile, with a flow velocity typically used in Resin Transfer 
Moulding ( ), the Reynolds number is about 0.05. As flows with a low Reynolds 
number can be described by the Stokes equations, we compare the solution of the Navier-
Stokes equations with the solution of the Stokes equations (Table 2).  

310 /m s−

This shows that for our application, we do not have to solve the non-linear Navier-Stokes 
equations with pseudo time-stepping, but can solve the steady Stokes equations with a 
preconditioned iterative solver instead. This can lead to a considerable speedup of the 
permeability simulations in comparison with the time-stepping we use now to solve the 
Stokes equations. Such a sophisticated Stokes solver is presently under development.  
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Table 2 Comparison between Navier-Stokes and Stokes calculations 
Setup 

Method PSA Vf 62% Natte Carbon woven fabric 

xxK  Navier-Stokes (mm2) 3.4e-03 3.3e-04 4.2e-04 

xxK  Stokes (mm2) 3.4e-03 3.3e-04 4.2e-04 

xxK  Cell Problem (mm2) 3.4e-03 3.3e-04 4.2e-04 

xxK  Experimental (mm2) - 2.7e-04 10%±  1.0e-04  10%±

 

 
 

Fig. 3. 3D image  and a 2D cut of the calculated flow field in the Natte model 
 

CONCLUSIONS 
 

Two methods for the calculation of the permeability of textiles have been presented. The 
solution of the Navier-Stokes/Brinkman equations with a finite difference solver yields the 
velocity and pressure field for Darcy’s law. On the other hand, the permeability can be 
calculated via the definitions given by the theory of homogenisation. Both methods lead to the 
same numerical results, hence solving the Navier-Stokes/Brinkman equations on the unit-cell 
is a correct approach to obtain the textile permeability. Furthermore, the numerical results are 
in good agreement with experimental results.  
Two formulas for the local permeability term of the Brinkman equation were discussed and 
compared with numerical results.  
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